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Spatial transcriptomics (ST) has revolutionized our understanding of gene expression within tissues by preserving spatial 
context. Over the past few years, this technology has led to a number of paradigm-shifting discoveries that have enabled 
a more comprehensive understanding of cellular functions and interactions in normal and diseased states. However, ST 
technologies still face challenges related to resolution, sensitivity, and technical variability. In this study, we evaluate the 
read coverage of commercialized pre-designed panels using publicly available ST datasets generated from the 10X 
Genomics and Nanostring platforms. We introduce the Coverage Index (CI) as a quantitative metric to assess the 
representation of established gene signatures across multiple ST datasets. Our findings reveal that cancer-related gene 
lists exhibit the highest CI values, while genes encoding for ligands and receptors tend to have low coverage. Additionally, 
CI analysis can help highlight intrinsic biases in gene panel design, influencing the detection capacity and thereby 
downstream comprehension of certain biological pathways. The insights gained from this study provide a framework for 
assessing ST panel performance and optimizing gene panels for future spatial transcriptomic applications.  
 

Introduction 
Understanding the spatial organization of gene expression 
within tissues is essential for deciphering cellular functions, 
interactions, under both homeostatic and disease states. 
Conventional transcriptomic approaches, such as bulk and 
single-cell RNA-seq (scRNA-seq), provide valuable insights 
into gene expression but discard the spatial information 
which is critically essential for the understanding of complex 
tissues and organ systems1. Spatial transcriptomics (ST) has 
emerged as a powerful technology that bridges the gap be-
tween transcriptomic analysis and tissue architecture, ena-
bling researchers to dissect the complex molecular land-
scapes of tissues2. However, one of the challenges remaining 
is the trade-off between resolution and sensitivity3. While ST 
platforms achieve near- or sub-cellular resolution, they often 
suffer from low transcript detection efficiency, making it dif-
ficult to capture rare or low-abundance transcripts4,5. Addi-
tionally, ST platforms rely on specialized instrumentation, 
complex sample preparation, and sequencing depth, leading 
to significant technical variability6. 

Spatial transcriptomics is a powerful technology 
that maps gene expression within the spatial context of tis-
sues, offering insights into cellular organization, tissue ar-
chitecture, and microenvironment interactions. It has revo-
lutionized biology and medicine by enabling the study of 
complex tissues, tumor microenvironments, and develop-
mental biology, and by advancing precision medicine 
through biomarker discovery and targeted therapies. How-
ever, spatial transcriptomics is susceptible to biases intro-
duced at various stages of the workflow. Changes in sample 
preparation, such as tissue fixation and sectioning, can alter 
RNA integrity and expression profiles. Human error in 

handling samples or during imaging and data analysis can 
lead to inconsistencies. Additionally, platform selection 
(e.g., slide-based vs. bead-based methods) and panel design 
(e.g., targeted vs. whole-transcriptome panels) influence 
data resolution and coverage, potentially introducing bias. 
Rigorous standardization of protocols, quality control 
measures, and validation strategies are crucial to minimize 
these biases and ensure reproducible and accurate results. 

To overcome these challenges, the field has devel-
oped a number of quality control metrics that have resulted 
in the gradual improvement in data quality over time, yet 
there are still gaps that need to be addressed. One such area 
is technical biases, notably a consistent pattern of genes ex-
hibiting either high or low coverage irrespective of sam-
ple/tissue type. To address this, we investigated and charac-
terized the capabilities of pre-designed panels using publicly 
available ST datasets: seven 10X Genomics Xenium In Situ 
with the Prime 5k panel and 16 Nanostring GeoMx DSP 
(Digital Spatial Profiler) datasets6–10 using the human whole 
transcriptome atlas (WTA) panel. We first obtained raw 
count matrices and aggregated them across samples within 
each study. Subsequently, we compared gene ranks with es-
tablished databases, i.e., MSigDB (https://www.gsea-
msigdb.org/), and assessed which gene lists were abundant 
using a binary classifier. The classifier delivers the coverage 
index (CI) and we finally compared CI values across various 
studies and databases to identify gene lists which are 
over/underrepresented. 

Results  
Evaluating the capacity of a pre-designed panel 
For our analysis, we utilized raw count matrix profiles to cal-
culate CI values across 23 distinct studies using ten gene da-
tabases (Fig. 1a). Higher CI values denote greater coverage 
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among gene members within a representative gene list, 
while lower CI values indicate reduced coverage. A CI value 
of 0.5 indicates a random distribution regarding read counts. 
To further explore the efficacy of cell-cell interaction analy-
sis, we compared these results with those derived from lig-
and and receptor genes11 (Fig. 1b). It was anticipated that 
studies utilizing the Xenium Prime 5k would exhibit lower 
CI values than those obtained from GeoMx WTA, owing to 
the difference in the number of genes included in the relative 
panels. While ligand genes within the Xenium context dis-
played lower coverage than their receptor counterparts,    
GeoMx data revealed comparable CI values for both ligand 
and receptor gene groups. An intriguing observation was 
that fresh frozen samples did not yield greater CI values for 
these genes, even though they captured approximately ten-
fold more transcripts per 100 µm² than formalin-fixed, par-
affin-embedded samples; this finding suggests that CI values 
may reflect inherent technical biases linked to the design of 
the gene panels vs. differences in sample preparation and/or 
handling. 

Furthermore, CI values for ligand/receptor genes 
were predominantly below 0.5, with one exception noted in 
the Spatial Organ Atlas (SOA)-Liver. In contrast, most can-
cer-related gene lists, i.e., Cancer Cell Atlas (C4, 3CA), ex-
hibited CI values exceeding 0.5 (Supplementary Fig. S1), 
suggesting that analyzing ligand/receptor genes may be 

more challenging due to low coverage compared to investi-
gating cancer cell-related genes. Correlation coefficients cal-
culated among the studies using aggregated raw counts re-
vealed that Spearman's rho in the Xenium panel consistently 
exceeded 0.75 across all comparisons, while GeoMx studies 
similarly demonstrated positive correlations (Supplemen-
tary Fig. S2). 

Cancer-associated genes captured a higher number of 
reads compared to other gene categories 
We computed the mean CI values across studies to evaluate 
coverage in ten diverse gene databases (Fig. 1c). The Curated 
Cancer Cell Atlas (C4, 3CA) member genes illustrated the 
highest coverage across both Xenium and GeoMx platforms. 
At the same time, the Oncogenic Signature (C6) exhibited 
marginal CI values near 0.5. It is critical to note that the 
Curated Cancer Cell Atlas data originated from scRNA-seq, 
whereas the Oncogenic Signatures were derived from 
microarray analyses. Examining the Hallmark gene sets, we 
found that four of the top five gene lists—
MYC_TARGETS_V1, TGF_BETA_SIGNALING, PROTEIN 
_SECRETION, and OXIDATIVE_PHOSPHORYLATION—
were shared across both panels. Conversely, three of the 
bottom five gene lists also aligned: PANCREAS_BETA 
_CELLS, SPERMATOGENESIS, and KRAS_SIGNALING 
_DN, indicating that such signature genes are relatively 
comparable across Xenium and GeoMx panels. When 

Figure 1. Evaluation of the pre-designed gene panel utilizing the coverage index (CI). (a) A schematic representation outlining the calculation 
of the CI. (b) CI values for 23 cohorts examining ligand and receptor genes. (c) Mean CI values across cohorts for ten different gene databases. 
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analyzing the Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathways, distinct strengths were noted for each 
panel; for instance, the mean CI values for the 
GRAFT_VERSUS_HOST_DISEASE were recorded at 
0.2969 for Xenium and 0.6130 for GeoMx (Supplementary 
Table S1). Conversely, the mean CI values for the 
GLYCOSPHINGOLIPID_BIOSYNTHESIS_GANGLIO 
_SERIES were 0.8622 for Xenium and 0.5585 for GeoMx. 
The Genetic Association Database (GAD) has cataloged 
genes associated with different types of diseases, revealing 

that cancer-related genes exhibit the highest median CI 
values compared to other gene categories (Supplementary 
Fig. S3). Conversely, the Xenium panel demonstrated a 
lower CI in detecting genes belonging to the CYP, UGT, and 
SLC protein families, primarily due to the intricate nature of 
paralogous relationships within these gene families. 
Consistent with this observation, CYP2A6 exhibited the 
lowest read count among all formalin-fixed, paraffin-
embedded samples analyzed within the Xenium studies 
(Supplementary Fig. S4). 

Figure 2. Voronoi diagrams illustrating the presence of genes on Xenium Prime 5k (white: presence; grey: absence) and their coverage 
(white: abundant; cyan: low-coverage) in FFPE samples. (a) Ligand (left) and receptor genes (right), and (b) Hallmark genes from the MSigDB 
database. Gene symbols are not shown due to the limited space but are present in Supplementary Fig. S8. 
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Ligand/receptor pair analysis using the Xenium In Situ and 
hallmark signatures  
The ligand/receptor pair analysis using Xenium is pivotal for 
achieving subcellular spatial resolution and understanding 
cell-cell interactions. To identify known ligand/receptor 
pair(s), CellChat v211 was employed, facilitating a 
comparison between ligand/receptor genes and the Prime 5k 
genes (Supplementary Fig. S5). Within the Xenium panel, 
418 ligands (53.2% of distinct ligands) and 486 receptors 
(67.5% of distinct receptors) were identified, and we 
subsequently evaluated the extent of low-coverage genes 
among these. A Voronoi diagram visualizes the overlap of 
the top 25th percentile low-depth genes across cohorts, 
indicating that of the 418 ligands and 486 receptors, 89 
(21.3%) and 80 (16.5%), respectively, were classified as low-
coverage genes (Fig. 2a). This translates to only 302 (9.3%) 
out of 3,234 ligand/receptor pairs being exhaustively 
examined using the Prime 5k. Additionally, we generated 
further Voronoi diagrams to illustrate the percentile rank of 
ligand/receptor genes across studies, thereby clarifying 
tissue variability (Supplementary Fig. S6). 

The Hallmark gene-set consists of curated gene 
signatures that define distinct biological processes or 
pathways. Among these signatures, the MYC_TARGETS 
_V1 exhibited the highest coverage, while the PANCREAS 
_BETA_CELLS genes demonstrated the lowest coverage 
across Xenium cohorts (Supplementary Fig. S7). 
Specifically, 79 genes from the MYC_TARGETS_V1 panel 
showed high coverage, whereas 7 (38.9%) out of 18 
PANCREAS_BETA_CELLS genes were identified as low-
coverage genes (Fig. 2b and S8). Notably, there were no low-
coverage genes within the MYC_TARGETS_V1 signature; 
however, of the 200 MYC_TARGETS_V1 genes present in 
the panel, only 79 (39.5%) were included (Supplementary 
Table S2). In contrast, the OXIDATIVE 
_PHOSPHORYLATION signature had the lowest 
proportion, with only 45 (22.5%) out of 200 genes in the 
panel. Conversely, 69 (79.3%) out of 87 
IL6_JAK_STAT3_SIGNALING genes were defined in the 
panel, although two of these, CSF2 and DNTT, were 
classified as low-coverage genes.  

Discussion 
This study comprehensively evaluates gene representation 
across pre-designed ST panels, highlighting key biases and 
limitations in current gene panel designs. By introducing the 
CI as a quantitative metric, we systematically assessed the 
capacity of the Xenium Prime 5k and the GeoMx WTA 
panels to capture gene expression across multiple datasets. 
Our findings reveal significant disparities in gene coverage 
across different biological pathways and gene categories, 
emphasizing the importance of panel design in ensuring 
robust and representative transcriptomic analyses. 
Furthermore, it is essential for researchers to understand 
any potential biases in gene coverage between panels/ST 
platforms when undertaking and analyzing their data. 

One of the most striking observations in our study 
is the consistently higher CI values observed for cancer-

related gene lists compared to other categories. This suggests 
that pre-designed ST panels are optimized for oncological 
research, likely due to the well-characterized nature of 
cancer-associated genes and their frequent inclusion in 
transcriptomic studies. In contrast, ligand/receptor gene 
pairs exhibited low CI values across most studies, indicating 
a potential limitation in detecting genes involved in cell-cell 
interaction. This finding underscores the need for enhanced 
panel designs, i.e., customized add-on panels, incorporating 
a broader representation of ligand/receptor genes. Although 
underrepresented low-coverage genes can still be utilized in 
statistical analyses within a case-control framework, 
researchers should consider a variety of methodologies to 
fully leverage the biological significance of these genes. Our 
study also highlights the limitations of current ST panels in 
accurately characterizing genes from specific protein 
families, such as CYP, UGT, and SLC, which exhibit 
complex paralogous relationships. The low CI values 
observed for these gene families suggest that existing panels 
may not sufficiently capture their diversity, potentially 
limiting the accuracy of pharmacogenomic and metabolic 
studies in spatial transcriptomics. 

One of the limitations of our study is the absence of 
a QC process, as we relied solely on raw read counts. 
Advanced quality assessment and normalization methods 
could potentially alter the CI values. Additionally, our 
analysis of the ST datasets was performed without sample 
annotations, such as tissue type, which suggests that the CI 
values may be influenced by tissue or sample specificity. 

In conclusion, our study provides essential insights 
into the design and performance of pre-designed ST panels. 
While current panels are well-suited for cancer research, 
their limitations in other disease categories or pathways 
highlight areas for improvement. Future advancements in 
ST technology should prioritize the inclusion of a more 
diverse gene or probe repertoire, ensuring comprehensive 
and unbiased transcriptomic analyses across a broader range 
of biological processes and disease contexts.  

Materials and Methods 
Ten gene databases 
Five gene-sets were downloaded from MSigDB12: Hallmark (H), Pathway 
(C2, KEGG_LEGACY), Curated Cancer Cell Atlas (C4, 3CA), Oncogenic 
Signature (C6), and Cell Type Signature (C8) (accessed in January 2025). 
From the literature and online search, we also downloaded five additional 
gene lists: OMIM (Online Mendelian Inheritance in Man)13, GAD (Genetic 
Association Database)14, Ligand and Receptor from CellChat v211, ADME 
(Absorption, Distribution, Metabolism, and Excretion)/PharmGKB (Phar-
macogenomics Knowledgebase) genes15, and CYP (cytochrome P450), UGT 
(glucuronosyltransferase), and SLC (solute carrier) family genes (Supple-
mentary Table S3). In the downstream analysis, we discarded gene lists with 
less than 10 or greater than 1,000 genes.  

Two pre-designed panels of the ST datasets  
We characterized two commercialized human panels, 10X Genomics Xe-
nium Prime 5k and Nanostring GeoMx DSP WTA, and localized two sets of 
ST data that are publicly available (Supplementary Table S4). We down-
loaded seven Xenium In Situ cohorts from the 10X Genomics data portal; 
seven and nine GeoMx DSP cohorts were obtained from the Nanostring web 
and GEO (Gene Expression Omnibus), respectively. Each platform has a 
consensus pipeline to assess the data quality but we do not run the pipelines 
to preserve transcripts/genes with low coverage. We compiled ST data into 
a single object using the R software (version 4.4.1). Specifically, a GeoMx 
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data object was assembled using the following R packages: NanoS-
tringNCTools (v1.12.0), GeoMxWorkflows (v1.10.0), and GeomxTools (3.8.0). 
On the other hand, a Xenium data object was generated using the R package 
HDF5Array (v.1.32.1).  

Coverage Index (CI) as a proxy to measure the panel coverage  
We aggregated the raw read or barcode counts across samples in each 
cohort, and genes were sorted based on the total read counts. For each gene 
list from the DBs, we mapped the member genes and ranked them to use 
the binary classifier to evaluate the coverage depth13. The classifier outputs 
the Area Under the Receiver Operating Characteristic Curve (AUC-ROC), 
calculated using the R package pROC (v1.18.5). Here, we defined AUC-
ROC as the CI, where higher CI values imply greater coverage depth. To 
summarize the CI values per gene list, we took a mean of the CI values 
across cohorts and generated a Violin/Box plot using the R package ggplot2 
(v3.5.1).  

Visualization using the Voronoi diagram  
Voronoi diagrams were generated using the R package WeightedTreemaps 
(v0.1.3) to represent underrepresented genes in each gene list. We used the 
voronoiTreemap function to outline the layout and generated the diagram 
using the drawTreemap function. Two gene lists—Ligand/Receptor and 
KEGG pathway—were used to create the diagrams to present genes that are 
not present in the Xenium Prime 5k and low-coverage genes. The low-
coverage genes were defined as an intersection of the 25th-percentile genes 
across six FFPE cohorts.  

Data and Code Availability 
This study's comprehensive analysis of public data is thoroughly docu-
mented in this published article and its accompanying Supplementary In-
formation files. To facilitate research reproducibility and replicability, a set 
of scripts has been made available at https://GitHub.com/UC-ASOC/Cov-
erage. Additionally, a ShinyApp is accessible at https://ShinyApps.UCal-
gary.ca/Coverage, enabling users to download (supplementary) Figures and 
processed data, and query users’ gene lists. 
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