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Aim: Current gene-level prioritization methods aim to provide information for further prioritization of
‘disease-causing’ mutations. Since, they are inherently biased toward disease genes, methods specific to
pharmacogenetic (PGx) genes are required. Methods: We proposed a gene-wise variant burden (GVB)
method that integrates in silico deleteriousness scores of the multitude of variants of a given gene at a
personal-genome level. Results: GVB in its simplest form outperformed the two state-of-the-art methods
with regard to predicting pharmacogenes and complex disease genes but not for rare Mendelian disease
genes. GVB* adjusted by paralog counts robustly performed well in most of the pharmacogenetic sub-
categories. Seven molecular genetic features well characterized the unique genomic properties of PGx,
complex, and Mendelian disease genes. Conclusion: Altogether, GVB is an individual-specific genescore,
especially advantageous for PGx studies.
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With the advent of next-generation sequencing, sequence-based gene-level approaches have emerged as useful
tools for prioritizing genes and/or variants. The residual variation intolerance score (RVIS) [1] assigns a score to
a gene as computed by ranking human genes of a population in terms of genic intolerance against functional
genetic variations. The gene damage index (GDI) [2] involves directly computing the mutational load of each
human gene. However, the current gene-level approaches focus only on investigating putative functional genes
associated with rare monogenic diseases with Mendelian traits. Conversely, genes and variants associated with
variable drug responses and common complex diseases are severely under-researched and comprehensive genomic
characterizations of pharmacogenetic (PGx), common complex disease and neutral (or nondisease) genes remain
to be elucidated.

Mendelian diseases generally express their life-threatening disease phenotypes at early stages of life whereas
common complex diseases tend to express their complex or indistinct phenotypes after several decades with a
significant contribution from environmental factors [3]. PGx variants, by definition, exhibit no phenotype unless
exposed to a specific drug. If a gene expresses its distinct phenotype without specific (drug) exposure, it would
properly be classified as a disease gene rather than a pharmacogene. In particular, in genetic terms, Mendelian diseases
are characterized by very few rare variants of high penetrance in a single gene under strong selective pressure. In
comparison, variants associated with common complex diseases are relatively frequent and tend to be spread across
multiple genes in heterogeneous forms, suggesting weak negative selection against such variants in complex disease
genes [4,5]. PGx variants occur in different contexts, generally in haplotypes consisting of one or more common
and rare variants exhibiting extensive interethnic variability compared with that of disease variants [6,7]. Notably,
however, even the proper use of medical terminologies to describe genetic variants is challenged. In ClinVar [8],
medical terms such as ‘pathogenic’, ‘likely pathogenic’ and ‘benign’ have been commonly used for annotating rare
Mendelian disease variants. Alternatively, it is currently recommended to annotate PGx variants with ‘metabolism:
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rapid, intermediate and poor’, ‘efficacy: resistant, responsive and sensitive‘, or ‘risk’ [9]. Nevertheless, despite the
rather distinct genomic characteristics, these different genetic categories are not differentially considered by the
current gene-level approaches.

RVIS [1] and GDI [2] constitute leading gene-level methods that compute a population-level score for each gene.
Since the scores depend on the genomic architecture of a specific population, they poorly considered issues of
interindividual and interethnic genetic variability, which has been considered as a strong predictor for explaining
unexpected responses to certain drugs [10]. Development of a gene-level method independent of or unbiased toward
the genomic architecture of a specific population constitutes an unmet need. Another well-recognized concern is
the knowledge-driven bias of obtaining information regarding candidate gene functions and phenotypes such as
biological pathways and gene ontologies [11]. One approach to alleviate this bias is to catalog distinct patterns of
various genomic properties for the purpose of discerning genes from different genetic categories and systematically
adopt the patterns in the subsequent analysis steps in an unbiased manner for all genes including understudied
genes with unknown functions.

Furthermore, genetic intolerance-based approach is unlikely to suit all purposes. It is pretty likely that a method
designed for disease-gene identification would not be successful at effectively discovering pharmacogenes or common
complex disease genes. Gene-wise variant burden (GVB), an integrated gene-level measure of the cumulative impact
of the multitude of deleterious variants on a given gene in a population data-free manner, has been successfully
applied to address numerous PGx problems [10,12–14], but the utility of GVB in a variety of genetic backgrounds
has not yet been performed. Thus, in the present study, we systematically evaluated the comprehensive genetic
categories of PGx, complex disease, Mendelian disease, nondisease and lethal genes using GVB along with the
gene-level methods by means of comprehensive genomic characterizations incorporating seven molecular genetic
features: number of paralogs, number of singletons, per-person mutability, protein–protein interaction (PPI) degree,
coding sequence (CDS) length, McDonald–Kreitman neutrality index (NI) and protein complexity.

Materials & methods
Variant annotation methods for GVB
The variants were annotated using the Phase III data available from the 1000 Genomes Project (http://www.10
00genomes.org/) [15]. Protein-coding gene regions were determined using ANNOVAR (http://annovar.openbioinf
ormatics.org/) [16]. Variant deleteriousness was predicted using seven in silico bioinformatics prediction methods:
SIFT (http://sift.jcvi.org/) [17–19], combined annotation-dependent depletion (CADD) [20], PolyPhen2 HIVD,
PolyPhen2 HVAR [21], PhyloP [22], MutationTaster [23] and GERP++ [24].

Collecting gene lists for comprehensive genetic categories
To evaluate how well the gene-level scoring methods predicted genes across multiple genetic conditions, we organized
known gene lists in three genetic categories: drug-related phenotypes, complex diseases and rare Mendelian diseases.
For the PGx category, we extracted five pharmacological gene sets from absorption, distribution, metabolism, and
excretion (ADME) (http://www.pharmaadme.org) and the Pharmacogenomics Knowledgebase (PharmGKB; 22
April 2020) [25]; ADME core, ADME extended, ADME all, PharmGKB VIP and PharmGKB. To ensure that
the evaluation was comprehensive, we classified the genes according the following pharmacological characteristics;
Pharmacological effect (i.e., toxicity, metabolism/PK, dosage and efficacy) in PharmGKB, pharmacodynamic
(PD) and pharmacokinetic (PK) phenotypes (i.e., target, enzyme, transporter and carrier) in the DrugBank
(http://www.drugbank.ca/; v5.15) [26], and enzyme families (i.e., CYPs and UGTs) (http://www.genenames.org/cg
i-bin/genefamilies).

Overall, 16 lists for common complex diseases were extracted from the Genetic Association Database (GAD; 23
July 2011) [27] using the disease class filter with the following criteria: aging, cancer, cardiovascular, chemdependency,
developmental, hematological, immune, infection, metabolic, neurological, normalvariation, pharmacogenomic,
psych, renal, reproduction and vision. Entries annotated with ‘Y’ were selected, which indicates a significant
association between a gene and a disease. Unclear phenotypes (unknown and others categories) and diseases with
few genes (mitochondrial category) were excluded from the 19 GAD disease classes.

For rare Mendelian disease categories, six gene lists from Online Mendelian Inheritance in Man (OMIM) [28]

(i.e., recessive, haploinsufficiency, dominant-negative, de novo, OMIM all and nondisease) were adopted based on
the report of [1]). Five nonviable gene lists were obtained from Bartha et al. (i.e., in vivo essential, in vitro essential
and mice essential) and Petrovski et al. (i.e., mouse genome informatics (MGI) lethality and MGI seizure) [1,29]. The
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performances of GVB, RVIS and GDI were evaluated using the pROC package of R software [30]. The predictive
performance was measured by calculating the proportion of genes with a score less than a threshold among known
PGx or disease gene set (true positives) against true negatives for all possible thresholds on the ranked score lists.;
the gene lists are summarized in Supplementary Table 1.

Gene-specific molecular genetic features
Genes were annotated with data on seven biologically meaningful molecular genetic features. We extracted the
number of paralogs, CDS length, NI and D value for 17,040 human genes from the study of Itan et al. [2]. According
to Itan et al.’s work, CDS length and number of paralogs were extracted via the Ensembl Biomart (version 75).
NI [(PN/PS)/(DN/DS)] was estimated by comparing the numbers of nonsilent and silent substitutions (DN and
DS) with the numbers of nonsilent and silent polymorphisms (PN and PS) [31]. Protein complexity was estimated

using Clark’s distance (D =
√

�d
i=1( |Pi −Qi |

Pi +Qi
)
2
, where Pi is the number of residues of amino acid i in protein P with

n amino acids, and Qi is the number of residues of amino acid i in the average human protein Q) by calculating
the squared root of half of the divergence [32]. Information regarding the human PPI degree was obtained using the
recent IntAct database (22 April 2020) for 12,128 genes [33]. The number of singletons and per-person mutability
for each human gene were calculated from the 1000 Genomes Project Phase III. Coding variants observed only
once in the 1000 Genomes Project data were considered as singletons. We defined per-person mutability for a gene
as Mi = (�n

j=1Vij)/n, where Vij is the total number of SIFT-annotated variants within gene i of the jth individual.

Calculation of GVB
To quantify the cumulative genetic effect for all coding variants of a gene, we calculated the GVB score as described
previously [10,12–14]. We obtained GVB scores ranging from 0 to 1 for each of the 17,502 human genes for the 2504
personal genome sequences of the 1000 Genomes Project. A gene is predicted to be more deleterious as the GVB
score approaches 0; GVB scores are listed in Supplementary Table 2. Based on a recently published GVB study
to find the optimal threshold value for tolerable variation [34], variants with SIFT score >0.7 were assumed to be
neutral and ignored (Equation 1).

Gi = {v | v with a SIFT score less than 0.7 } (Eq. 1)

Considering allelic dosage effects, homozygous variants were considered to be more damaging than a variant in a
heterozygous state (Equation 2).

adjv j =

⎧⎪⎨
⎪⎩

(SIFT score)0.5, if v j ∈ Gi and heterozygote

SIFT score , if v j ∈ Gi and homozygote
(Eq. 2)

The GVB score for each gene Gi with n deleterious variants was calculated as the geometric mean of SIFT score v
(Supplementary Figure 1, Equation 3).

GVB(Gi ) =

⎧⎪⎨
⎪⎩

1 , if n (Gi ) = 0

(�n
j=1 adjv j )

1
n , if n (Gi ) > 0

(Eq. 3)

The GVB score is 1 if count n of variant j with scores >0.7 in a gene equals 0, indicating that the gene does not
harbor any potentially damaging variant. We replaced zero with near-zero (10-8) values to handle a multiply-by-zero
problem, when the SIFT score of the variant was zero or zero equivalent.

Adjustment of GVB by the seven molecular genetic features
Using the seven genetic parameters as weights, we systematically generated four variations of the GVB score to
comprehensively evaluate its predictive power under different genetic conditions by simply dividing or multiplying
each of the seven biologically meaningful molecular genetic features (Supplementary Table 3). A pseudo value of
10-8 was used when the parameter value was zero. Since SIFT showed the best overall predictive performance, the
results are drawn mainly using the SIFT-based GVB score. We applied the adjustment scheme independently for
the genes for which each of the genetic molecular features is available (Supplementary Figure 2).
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Table 1. Characteristics of gene-level prioritization methods.
Feature GVB RVIS GDI

Score assignment for a gene Per person score Population-wise score Population-wise score

Population dependency Independent ESP6500 (Exome Sequencing Project v.
6500)

The 1000 Genomes Project, Phase III

Variables for variants SIFT, CADD, PolyPhen HIVD, PolyPhen
HVAR, PhyloP, MutationTaster and GERP
in silico prediction scores

Mutation frequency Allele frequency and CADD

Value range [0, 1] [-8.29, 29.75] [0, 42.91]

Value normalization Yes No No

Value type Absolute Relative Relative

CADD: Combined annotation-dependent depletion; GDI: Gene damage index; GERP: Genomic evolutionary rate profiling; GVB: Gene-wise variant burden; RVIS: Residual variation
intolerance score.

Results
Comparison of the genomic characteristics revealed by GVB, RVIS & GDI
We defined the GVB as the overall impact of multiple deleterious variants on a gene (Supplementary Figure
1). GVB assigns a score for each gene for each individual using in silico prediction scores (e.g., SIFT [17–19],
CADD [20], PolyPhen2 HIVD, PolyPhen2 HVAR [21], PhyloP [22], MutationTaster [23] and GERP++ [24]), while
RVIS and GDI methods use relative frequencies of alleles (i.e., variability) in a given population and/or a variant
deleteriousness score (i.e., CADD [20]). Whereas scores of population-based design are sensitive to the genomic
architecture of different populations, GVB is not only independent of but also a useful tool for investigating the
genomic architecture of a population (Table 1). Population-specific GVB scores and their distributions for all genes
can easily be created by aggregating the individually assigned GVB scores.

Given the simple mathematical GVB equations (Equations 1–3), it is straightforward for GVB to assimilate
genetically significant molecular features as parameters (Supplementary Figure 2). We defined GVB* as a modifica-
tion of GVB to include the seven molecular genetic features: number of paralogs, number of singletons, per-person
mutability, PPI degree, CDS length, McDonald–Kreitman NI and protein complexity.

Comprehensive evaluation of GVB across multiple genetic categories
Figure 1 exhibits the distributions of the areas under the receiver operating characteristic (ROC) curves (AUCs) as
the measures of the discriminant powers of GVB (and GVB*), RVIS and GDI for PGx, common complex disease,
and rare Mendelian disease gene categories and subcategories. Overall, GVB outperformed RVIS and GDI in PGx
and complex disease gene categories (Figure 1, top and middle panels). GVB* augmented by the number of paralogs
and CDS lengths further improved the predictive performances of GVB across almost all genetic subcategories
(Supplementary Table 4).

Both GVB and GVB* outperformed for determining all five PGx categories (i.e., ADME core, ADME extended,
ADME all, PharmGKB VIP and PharmGKB) in addition to all four pharmacological effect categories (i.e., toxicity,
metabolism/PK, efficacy and dosage). Notably, performances of both GVB and GVB* were higher for core than
peripheral PGx categories, in other words, ADME core > ADME extended (AUCGVB: 0.71 > 0.58; AUCGVB*:
0.76 > 0.68) and PharmGKB VIP > PharmGKB (AUCGVB: 0.62 > 0.55; AUCGVB*: 0.72 > 0.58) (Figure 1, top
panel and Figure 2A). Both GVB and GVB* demonstrated markedly high AUCs for the PK carrier, enzyme and
transporter but not for the PD target category. Moreover, both GVB and GVB* demonstrated higher performances
for core than peripheral PGx categories, in other words, Target PGx > target, transporter PGx > transporter,
enzyme (UGT) > enzyme (CYP) > enzyme PGx > enzyme, and carrier PGx > carrier (Figure 1 top panel and
Figure 2B).

Under the common complex disease model provided by the GAD (Figure 1, middle panel), each gene-level
method demonstrated its own merits in different subsets. GVB consistently outperformed RVIS and GDI with
regard to the GAD Pharmacogenomic subcategory (AUCGVB* = 0.71, AUCGVB = 0.69). Overall, GVB and GVB*
exhibited higher AUCs for the majority of the GAD common complex disease subcategories, excepting GAD
Developmental, Psych and Chemdependency subcategories, which do not belong to common complex diseases.

Under the traditional rare Mendelian disease model, both RVIS and GDI outperformed GVB in OMIM Hap-
loinsufficiency, de novo, and dominant negative categories. Overall, RVIS performed best in predicting monogenic
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Figure 1. Performance comparison of gene-wise variant burden, Residual Variation Intolerance Score and Gene Damage Index for
determining pharmacogenetic, complex disease and Mendelian disease genes. The AUC values for each subcategory are represented as
colors ranging from gray (low AUCs) to red (high AUCs) according to their intensity scale. GVB*: GVB adjusted by the number of paralogs
and CDS length.
ADME: Absorption, distribution, metabolism and excretion; AUC: Area under the receiver operating characteristic curve; CDS: Coding
sequence; GAD: Genetic association database; GDI: Gene damage index; GVB: Gene-wise variant burden; OMIM: Online Mendelian
Inheritance in Man; PGx: Pharmacogenetic; PharmGKB: Pharmacogenomics Knowledgebase; PK: Pharmacokinetic; RVIS: Residual variation
intolerance score.

disease genes. Notably, GVB outperformed RVIS and GDI in the OMIM recessive subcategory (AUCGVB = 0.57),
for which both RVIS (AUCRVIS = 0.55) and GDI (AUCGDI = 0.41) functioned poorly, in part owing to the
population-independent design. The rank orders of the prediction AUCs of RVIS and GDI decreased as fol-
lows: OMIM haploinsufficiency > de novo > dominant negative > recessive, which corresponds to the order of
phenotypic severity (Figures 1 & 2).

AUCs for all of the PGx, GAD common-disease and OMIM rare-disease categories showed an inverse correlation
between GVB and RVIS (Spearman’s r = -0.82, -0.50 and 0.81, respectively) along with GVB and GDI (Spearman’s
r = -0.70, -0.80 and -0.97, respectively). This tendency could be explained by the different approaches of the
methods. Whereas RVIS and GDI use population datasets to determine highly intolerant genes with severe
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Figure 2. Performance comparison of gene-wise variant burden, Residual Variation Intolerance Score and Gene Damage Index for
determining pharmacogenetic, complex disease and Mendelian disease gene categories and subcategories. (A) Comparison of GVB,
GVB*, RVIS and GDI by ROC curves for five pharmacological, 16 complex disease and six Mendelian disease gene categories and (B) four
pharmacological-effect, four pharmacodynamic- and kinetic-phenotype and two enzyme-family gene subcategories. GVB*: GVB adjusted
by the number of paralogs and CDS length.
AUC: Area under the curve; CDS: Coding sequence; GDI: Gene damage index; GVB: Gene-wise variant burden; ROC: Receiver operating
characteristic; RVIS: Residual variation intolerance score.

evolutionary conservation, GVB attempts to balance variant deleteriousness (by means of applying in silico variant
prediction methods) and interindividual variabilities (by means of bottom-up aggregation of individualized scores)
across the population, as appropriate.

Notably, GVB* adjusted by the number of paralogs and CDS lengths consistently improved the performances
of GVB not only for PGx and GAD common-disease gene categories but also for OMIM rare-disease categories
(Figures 1 & 2). Moreover, GVB* reversed the negative correlation of GVB with RVIS and GDI for the OMIM
category to be positive (GVB* vs RVIS: Spearman’s r = 0.78 and Kendall’s τ = 0.69; GVB* vs GDI: Spearman’s
r = 0.62 and Kendall’s τ = 0.50). The same genetic molecular features for GVB*; in other words, the number of
paralogs and CDS lengths, markedly improved both GVBs albeit in the opposite directions for pharmaco- and
complex disease genes and rare monogenic-disease genes. The results presented here are drawn mainly using the
SIFT-based GVB that showed the best overall predictive performance (Supplementary Table 4), and consistent
and successful evaluations for improved performances of boosting the seven molecular genetic features across seven
different in silico variant prediction methods were demonstrated (Supplementary Figure 2).

Further evaluation of PGx subcategories including pharmacological effect, PK/PD and enzyme families demon-
strated that GVB outperformed and GVB* further outperformed both RVIS and GDI (Figure 2B). Whereas
Toxicity showed the highest AUC (AUCGVB = 0.67), the AUCs most benefitting by GVB* adjustment were those
for metabolism/PK (AUCGVB* = 0.64 and AUCGVB = 0.56) and Dosage (AUCGVB* = 0.67 and AUCGVB = 0.61),
likely owing to the higher number of paralogs of PK enzymes than those of PD toxicity genes. When the enzyme
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Figure 2. Performance comparison of gene-wise variant burden, Residual Variation Intolerance Score and Gene Damage Index for
determining pharmacogenetic, complex disease and Mendelian disease gene categories and subcategories (cont.). (A) Comparison of
GVB, GVB*, RVIS and GDI by ROC curves for five pharmacological, 16 complex disease and six Mendelian disease gene categories and (B)
four pharmacological-effect, four pharmacodynamic- and kinetic-phenotype and two enzyme-family gene subcategories. GVB*: GVB
adjusted by the number of paralogs and CDS length.
AUC: Area under the curve; CDS: Coding sequence; GDI: Gene damage index; GVB: Gene-wise variant burden; ROC: Receiver operating
characteristic; RVIS: Residual variation intolerance score.

genes were categorized into gene families, the best performance was achieved among all categories by the UGT
families (AUCGVB* = 0.97, AUCGVB = 0.74, AUCGDI = 0.38 and AUCRVIS = 0.35).

Genomic characterization of PGx, complex disease & Mendelian disease genes
The number of paralogs of a gene constitutes a useful indicator of essentiality based on phyletic characteristics [35].
Genes that belong to a paralogous family are assumed to exhibit high functional redundancy in order to cope with
the possibility of their disruption, whereas genes without paralogs are more likely to be essential [36,37]. Figure 3
demonstrates that pharmacogenes (n = 3552) tend to be more paralogous than other genetic categories (p < 0.001).
Mendelian disease (n = 2052) and nonviable genes (n = 1118) were less paralogous than the complex disease genes
(n = 1046), likely resulting from strong selective pressure. Notably, the nondisease gene category (n = 14,316)
shows fewer paralogs. When extracting genes with the most (25%) and the least intolerant quartile RVIS values,
the consistent result that genes in both intolerant (5.31 ± 5.8) and tolerant (5.91 ± 8.1) quartiles tend to be more
paralogous than the whole genes (4.94 ± 6.6) is shown (Supplementary Figure 3).

Singletons are defined as ultra-rare variants observed only once in a population, which corresponds in the present
study to the 2504 subjects in the 1000 Genomes Project [15]. The accumulation of rare, recently evolved and
potentially damaging variants within a gene itself can be important evidence of evolution, just as gene length is
recognized as one of the most important evidence in evolution [38,39]. Mendelian disease genes tend to harbor a
larger number of singletons, representing a variety of evolutionarily recent rare variants. Common complex disease
genes are more likely to be comprised of fewer rare variants albeit more common variants that are sufficiently
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Figure 3. Genomic characterization of pharmacogenetic, complex disease, Mendelian disease, nondisease and nonviable genes with
the seven genetic molecular features. The distributions for the average genetic features of the subcategories are displayed.
*p < 0.1; **p < 0.05; ***p < 0.01 by the Wilcoxon test.
CDS: Coding sequence; NI: Neutrality index; PGx: Pharmacogenetic; PPI: Protein–protein interaction.

old to be shared/tolerated across populations. PGx genes harbor more singletons than complex disease genes but
fewer than Mendelian disease genes (Figure 3). Local adaptive selection is a plausible explanation for PGx genes
carrying common functional variants. Positively selected variants can lead to an increased frequency of linked
deleterious variants by genetic hitchhiking, resulting in higher interethnic heterogeneity that helps to avoid adverse
drug reactions in certain populations [6,7].

We defined the ‘per-person mutability’ of a gene as the average number of protein-coding variants of a gene
to indicate the endurable degree of genetic variability for an individual human genome. Complex disease genes
showed the highest per-person mutability, allowing a gene to harbor multiple variants associated with complex
diseases and/or phenotypes. Pharmacogenes exhibited moderate and Mendelian disease genes the lowest levels of
per-person mutability (Figure 3).

NI estimates the selective pressure on human genes, where NI <1 (an excess of nonsynonymous divergence)
indicates a signal of purifying selection and NI >1 (an excess of nonsynonymous polymorphism) indicates a
signal of positive selection [2,40,41]. The average NI values for complex disease genes were higher than those of
Mendelian disease genes (Figure 3), which may imply that increased levels of deleterious variants have long been
accumulated in complex disease genes although their CDS lengths are shorter than those of Mendelian disease and
nonviable genes. Figure 3 demonstrates that PGx genes have also accumulated more deleterious variants (a signal
of (locally adaptive) purifying selection) than Mendelian disease and nonviable genes. GVB successfully captured
these complex genomic characteristics of high NI and per-person mutability for PGx along with complex disease
genes.

Mendelian disease and nonviable genes tended to have greater PPI degrees and CDS lengths (Figure 3), which are
indicators of gene essentiality and disease-associated mutations [42–44]. Common variants accumulate in disordered
regions whereas pathogenic variants are significantly depleted in disordered regions [2,45,46]. Disordered amino acid
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Figure 4. Genomic landscape of genetic molecular features among pharmacogenetic, complex disease and Mendelian disease gene
categories. Genomic landscape of genetic molecular features differentiating (A) pharmaco- versus common complex disease genes, (B)
pharmaco- versus rare Mendelian disease genes and (C) common complex versus rare Mendelian disease genes. Mean numbers of
singletons (as evidence for component of genetic variability) and paralogs (as evidence for degree of selective pressure) and mean CDS
lengths are represented by the horizontal and vertical axes and PPI degree and protein complexity by circle size. (D) Genomic landscape
of phenotypic subgroups is visualized using four genetic features including per-person mutability.
CDS: Coding sequence; PGx: Pharmacogenetic; PPI: Protein–protein interaction.

composition was estimated using Clark’s distance [2,32,47]. Our results showed that complex disease genes had higher
D values than Mendelian disease genes.

Figure 4 exhibits the genomic landscape of molecular features across the different genetic categories. Through
introduction of the concept of per-person mutability, clear separation of the three geno-phenotypic categories of
genes is demonstrated (Figure 4D). Mendelian disease genes were characterized by rare frequency, slow evolution and
highly functional, thereby being highly intolerant to variations in a personal genome. Common complex disease
genes were characterized by the highest per-person mutability with fewer singletons, allowing the multiple co-
existence of many neutral variants that were tolerated. Pharmacogenes were characterized by a moderate number of
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singletons, moderate per-person mutability and the largest number of paralogs. The present study thus demonstrated
the manner in which we understand and identify meaningful molecular genetic features and apply them to develop
robust gene-level methods to differentiate PGx, common complex disease and rare Mendelian disease genes in the
context of comprehensive genomic characterizations.

Correlation of GVB-derived interindividual variability with the number of paralogs
According to the prevailing hypothesis that genes with a larger number of paralogs are under looser evolutionary
constraints [48], we assumed that the genetic variability among individuals increased with the number of paralogs
through the accumulation of mutations. Consistent with this, we found that the coefficient of variation for the 2504
individuals of the 1000 Genomes Project positively correlated with the number of paralogs (Kendall’s τ = 0.085,
p < 0.0001, Supplementary Figure 5). This suggested that GVB might be used as a quantitative measure for the
effect of an allelic function that is significantly correlated with the evolutionary potential of a genetic variation.

Discussion
Proper population-based gene-level scores for all genes for particular ethnic or demographic groups are not yet readily
available. This difficulty may prohibit the wide utility of the previous population-based gene-level approaches. In
contrast to the leading gene-level methods including RVIS and GDI, GVB constitutes an unbiased method to
evaluate the genomic architectures of populations, as this method assigns a gene-level score for each gene without
using population data.

Particularly in the fields of pharmacogenetics and pharmacogenomics, the associated interindividual and in-
terethnic genetic variability tends to be much larger than that of Mendelian disease genetics. Genetic variability
thus constitutes a main factor contributing to the variabilities of responses to many drugs among different individ-
uals and ethnic groups, which can lead to severe adverse drug reactions and poor efficacies. Consistent with this,
interethnic variability, a phenomenon long been considered to be inherently unpredictable, was reported to be a
strong predictor of pharmaceutical market withdrawals [10]. Conversely, when bringing drugs to market, all known
risk factors are highly regulated through the clinical trial I to III phases for comprehensive evaluations, with the
exception of the interindividual genetic variability that is well captured by GVB. We therefore recently evaluated
GVB in direct comparison to the standard clinical pharmacogenetics of thiopurine metabolism by TPMT and
NUDT15 genes in pediatric patients with acute lymphoblastic leukemia. Patients at high risk of 6-mercaptopurine-
induced adverse reactions were identified using GVB by integrating a number of clinically well-established gene
effects. Notably, we successfully demonstrated that the GVB method is comparable or even superior to the best
established pharmacogenetics of thiopurine therapy based on traditional diplotype-based methods [13].

In the present study, we found that GVB complemented RVIS and GDI, the leading gene-level methods focusing
on Mendelian genetics. This finding reflects the distinct genomic characteristics of rare Mendelian- and common
complex disease genes [4,42,49–51]. The genetic background of complex disease genes may be more similar to that
of pharmacogenes than Mendelian disease genes, as chronic diseases are influenced by a complex combination
of genetic effects, environmental stimuli and lifestyle factors [52], similar to the phenotypic consequences in drug
metabolism that occur when externally triggered by a stimulus, such as a drug. The disease burdens of common
complex diseases are obviously much greater than those of rare Mendelian diseases. Nevertheless, further fine tuning
of GVB for specific common complex disease categories considering the underlying genetic architecture of each
common disease category is necessary to fully exploit this methodology.

For the nondisease gene set, unexpected distributions of genetic features, such as the lowest number of paralogs
and per-person mutability or a relatively high degree of PPI were shown. These results are consistent with previous
studies reporting that the nondisease category contains genes inducing nonviable phenotypes with functional
disruptions, which do not present disease phenotypes by definition [53]. Nonviable genes showed a pattern of
genomic characteristics that was very similar to that of Mendelian disease genes (Figures 3 & 4). However,
nonviable genes had fewer paralogs, more singletons and lower per-person mutability than Mendelian disease
genes (Figure 3), suggesting that they are under stronger selective pressure with a higher variability of rare variants
that have not survived to an extent allowing frequent occurrence in individual genomes. Overall, nonviable genes
appeared to exhibit a slight bias toward extreme values compared with those of Mendelian disease genes (Figures 3
& 4).

Comprehensive genomic characterization of molecular features displayed clear separation of the three geno-
phenotypic categories of genes. Common complex disease genes exhibited smaller number of singletons (x-axis) and
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the highest protein complexity (dot size) with modest number of paralogs (y-axis). Pharmacogenes showed the most
paralogs with moderate protein complexity and singletons (Figure 4A). The smaller number of singletons reflects
that complex disease genes accumulate environmentally well-adapted neutral variants in disordered regions (higher
protein complexity) under stronger selective pressure compared with pharmacogenes. Figure 4B demonstrates that
Mendelian disease genes exhibit long CDS lengths (x-axis), with high PPI (dot size), and few paralogs (y-axis).
Pharmacogenes have the shortest average CDS length, low PPI and the most paralogs. CDS length has been
reported as important evidence of evolution, such that longer genes evolve slowly as they cost more to duplicate and
this renders them more deleterious upon overexpression [38,39]. Figure 4C demonstrates that, as expected, complex
disease genes exhibit low PPI (dot size), short CDS length (x-axis) and the lowest number of singletons (y-axis).

Genomic characteristics for the genetic categories of GAD psych and GAD developmental were similar to
those of Mendelian disease genes, harboring higher number of singletons and longer CDS lengths (Supplementary
Figure 4). This finding is consistent with the previous studies reporting that the high heritability of developmental
disorders and major psychiatric conditions resemble the pattern expected from Mendelian-like genes [54] although the
complex natures of those diseases (e.g., the strength and specificity of association and nongenetic inheritance) do not
necessarily obey the rules of simple Mendelian inheritance [55,56]. Similarly, PGx PD Targets and Efficacy categories
also exhibited a relatively small number of paralogs and a large number of singletons, similarly to Mendelian disease
genes. This result is consistent with the previous studies that target genes of successful inhibitors are intolerant to the
functional variants as extreme as known haploinsufficient genes [57,58]. The GAD pharmacogenomic subcategory
showed a similar pattern with the Pharmacogene category, as expected. GAD chemdependency, represented by
alcohol or substance abuse/addiction, also showed a similar pattern with that of Pharmacogenes.

The present study mainly described the results using the SIFT algorithm, which yielded the most robust
predictions (Supplementary Table 4). When using the optimal threshold value to determine tolerable variation
(SIFT >0.7), a reliable and high level of performance of SIFT was consistently replicated [34]. GVBs composed
of other in silico variant prediction methods other than the SIFT algorithm performed well with unique profiles
of advantages and limitations (i.e., CADD, PolyPhen2 HIVD, PolyPhen2 HVAR, PhyloP, MutationTaster, and
GERP++; Supplementary Figure 2).

It has long been assumed that genes from different genetic backgrounds inherit different genomic characteristics.
To the authors’ best knowledge, the present study is the first to systematically explore this historical intuition in the
context of PGx, common complex disease and rare Mendelian disease together with nonviable and nondisease gene
categories and subcategories. GVB also provides a genetic condition-specific scheme for molecular genetic-feature
optimizations. However, caution is needed in interpreting the effect of aggregate variables. Future work should
apply much more sophisticated schemes based on various types of genetic features under a variety of genetic
scenarios. Further investigation of large-scale genomic DNA changes such as copy number variations or subdivided
regions such as protein domains and exons is necessary to improve and facilitate proper clinical interpretations

Summary points

• Current gene-level approaches including the residual variation intolerance score (RVIS) and the gene damage
index (GDI) use a population dataset to find pathogenic genes by assigning a score for each gene for a given
population. Thus, they provide population-dependent and collective evaluation scores that are not individualized.

• Gene-wise variant burden (GVB) assigns a score for each gene for each individual in a population-independent
and individual-specific manner, which is necessary for clinical applications.

• GVB outperformed RVIS and GDI in predicting pharmacogenetic (PGx) genes and common complex disease genes,
while RVIS and GDI outperformed for rare Mendelian disease gene predictions.

• Evolutionary conservation is different between variants within genes associated with congenital diseases that are
under purifying selection and those which are not congenital-disease associated, such as most pharmacogenes
and most common complex disease genes in their later lives. Different strategies are needed for
pharmacogenicity versus early and late pathogenicity investigations.

• GVB performance was further improved by molecular genetic features including numbers of paralogs and
singletons, per-person mutability, protein interaction degrees, gene length, selective pressure, and protein
complexity.

• The GVB score provides fully individualized gene-level PGx scores to be applied to predict subgroups vulnerable
to severe ADRs for certain drugs.
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of the findings [59]. GVB considers allelic dosage effects, and the potential dosage effects potentially created by
duplications and deletions can further be considered.

GVB obtained by integrating variant deleteriousness scores in silico of the multitude of variants of a given gene
better predicted PGx and complex disease genes than the leading gene-level prioritization methods, RVIS and GDI.
GVB adjusted for genetic molecular features further improved genomic characterizations and complemented RVIS
and GDI for prioritizing ‘disease-causing’ rare mutations. Moreover, GVB not only successfully differentiated but
also revealed the genomic landscape of the comprehensive genetic categories and subcategories of PGx, complex
disease, rare disease, neutral (nondisease) and lethal genes. The insights presented here should aid personal–genome
interpretations in the context of pharmacogenetics and common- and rare-disease phenotypes in the era of personal
genomics.
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