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T cells arise in the thymus from precursor CD4+CD8+ double-positive  
(DP) thymocytes through the process of positive selection, which 
is initiated by low-affinity interactions between their surface TCR 
and intrathymic major histocompatibility complex (MHC) molecules 
loaded with self peptide. High-affinity interactions, in contrast, cause 
‘negative selection’ by inducing apoptosis of DP thymocytes that 
have received such signaling1. Regardless of the MHC specificity of 
the DP thymocyte that has received signaling, a chief consequence 
of positive selection is that it induces an anti-apoptotic program, 
including expression of the pro-survival protein Bcl-2, that enables 
selected thymocytes to survive and complete their maturation1,2. 
Despite growing evidence of the key molecules that control thymo-
cyte selection signaling and the transcription factors that establish 
the various T cell lineages, the cellular machinery that integrates and 
sustains the pro-survival program in post-selection thymocytes is not  
fully understood.

Proteasome-dependent post-translational regulatory mechanisms 
that control the turnover of complexes of the TCR and its invariant 
chain CD3 and apoptosis have long been recognized as critical regula-
tors of thymocyte development3,4. However, even though inhibition 
of proteasome activity stabilizes pro-survival proteins to prevent the 
apoptosis induced by TCR agonists or glucocorticoids that leads to thy-
mocyte differentiation4,5, it can also stabilize pro-apoptotic proteins 
and death-associated caspases to impair thymocyte maturation6. Such 
observations highlight the complexity of the cellular post-translational  

machinery and suggest that the post-translational regulation in thy-
mocytes must be very finely tuned in response to appropriate TCR 
selection signals to achieve the desired developmental fates.

Originally identified in yeast, the ESCRT machinery comprises 
a large family of proteins that together orchestrate the membrane-
deformation and membrane-scission events required for the forma-
tion of multivesicular bodies (MVBs), endocytosis and retroviral 
budding in eukaryotic cells7. In the most basic setting, ESCRT com-
plexes are recruited sequentially (from ESCRT-0 to ESCRT-III)  
onto the surface of endosomal membranes with ubiquitinated  
transmembrane cargoes, which leads to their being sorted into  
membrane-delimited intralumenal vesicles within MVBs7. The rate-
limiting critical final step, which involves disassembly of the ESCRT 
complex and scission of the nascent delimited membrane vesicle, 
is mediated by the AAA–ATPase complex VPS4 in a reaction that 
requires accessory ESCRT proteins, including CHMP5 (also known 
as VPS60 or MOS10)8,9. Yeast vps60-null mutants have disrupted 
endocytic sorting10, and CHMP5-deficient mouse embryonic cells 
have enlarged late endosomes that fail to form lysosomes, which 
results in impaired receptor downregulation11, consistent with a  
role for CHMP5 in the ESCRT machinery. However, CHMP5 sup-
presses ubiquitination of the inhibitor IκBα in osteoclasts without 
any alteration in the endocytic pathway12, which indicates that the 
function of individual ESCRT proteins probably extends beyond their 
membrane-remodeling activity.
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The acquisition of a protective vertebrate immune system hinges on the efficient generation of a diverse but self-tolerant repertoire 
of T cells by the thymus through mechanisms that remain incompletely resolved. Here we identified the endosomal-sorting-complex-
required-for-transport (ESCRT) protein CHMP5, known to be required for the formation of multivesicular bodies, as a key sensor of 
thresholds for signaling via the T cell antigen receptor (TCR) that was essential for T cell development. CHMP5 enabled positive 
selection by promoting post-selection thymocyte survival in part through stabilization of the pro-survival protein Bcl-2. Accordingly, 
loss of CHMP5 in thymocyte precursor cells abolished T cell development, a phenotype that was ‘rescued’ by genetic deletion of 
the pro-apoptotic protein Bim or transgenic expression of Bcl-2. Mechanistically, positive selection resulted in the stabilization of 
CHMP5 by inducing its interaction with the deubiquitinase USP8. Our results thus identify CHMP5 as an essential component  
of the post-translational machinery required for T cell development.
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Here we identified CHMP5 as an essential component of the posi-
tive-selection machinery required for T cell development. Beyond its 
role in MVB formation, we discovered a non-canonical post-transla-
tional activity of CHMP5 that prevented oxidation and degradation 
of Bcl-2 to ensure the post-selection survival of thymocytes. That 
CHMP5 activity ‘mapped’ specifically to the intermediate-thymocyte  
stage of development. As lack of CHMP5 in thymocyte precursor  
cells completely abolished T cell maturation, our findings reveal 
an unexpected and previously unknown thymocyte developmen-
tal checkpoint in which post-translational stabilization of CHMP5  
enables the completion of positive selection.

RESULTS
CHMP5 expression in developing thymocytes
While assessing ubiquitin-regulated proteins in thymocytes, we 
discovered that CHMP5 was stabilized by the proteasome inhibitor 
MG132 in a manner that paralleled MG132-dependent stabiliza-
tion of proteins of the Bcl-2 family13,14 (Supplementary Fig. 1a,b), 
suggestive of a potential role for CHMP5 in T cell development. 
Analysis of the expression of Chmp5 mRNA and CHMP5 protein 
in sorted thymocytes revealed that CHMP5 was post-transcription-
ally regulated, with the highest protein expression in intermediate 
(CD4+CD8loCD24hiTCRβint–hiCD69+) thymocytes (Fig. 1a,b), which 
represent the post-selection ‘lineage-decision’ checkpoint and are 
the immediate precursors of mature T cells2. TCR-induced selection 
might uniquely modulate CHMP5, as the expression of representative 
proteins of the ESCRT family changed only modestly in develop-
ing thymocytes (Supplementary Fig. 1c). Thymocyte expression of 
CHMP5 protein and Chmp5 mRNA was independent of TCR specifi-
city, as it was induced in thymocytes that received MHC class I signal-
ing and those that received MHC class II signaling in mice deficient 
in the MHC class II molecule H-2Ab (H2-Ab1−/−) and mice deficient 
in the MHC class I molecule β2-microglobulin (B2m−/−), respectively 
(Fig. 1c and Supplementary Fig. 1d). Thus, the induction of CHMP5 
protein was associated with the positive selection of thymocytes.

T cell development requires CHMP5
To determine the function of CHMP5 during T cell development, we 
crossed mice with loxP-flanked alleles encoding CHMP5 (Chmp5fl/fl)12  
to mice with transgenic expression of Cre recombinase from the promoter 
of the T cell–specific gene Cd4 (Cd4-Cre) to generate mice with condi-
tional deletion of CHMP5 in thymocytes (called ‘conditional knockout’  
(CKO) mice here) (Fig. 2a and Supplementary Fig. 1e). The CKO mice 
were born at normal Mendelian ratios and showed no gross abnor-
malities relative to the phenotype of their Chmp5fl/fl littermates (called 
‘wild-type’ here) or that of Chmp5fl/+Cd4-Cre mice, which were phe-
notypically identical to the wild-type mice (data not shown). Of note, 
loss of CHMP5 did not alter expression of genes encoding other ESCRT 
proteins (Supplementary Fig. 1f). However, histological analysis of 
CKO mice revealed a thymus with a considerably disorganized architec-
ture and fragmented medullary regions (Fig. 2b), suggestive of defects 
in positive selection15. Despite having a normal number of DP thymo-
cytes, CKO mice showed a striking loss of mature (CD24loTCRβhi) 
thymocytes, including CD4+ or CD8+ single-positive cells (Fig. 2c and 
Supplementary Fig. 2a). Similarly, the peripheral lymphoid organs, 
such as the lymph nodes and spleen, of the CKO mice were almost com-
pletely devoid of αβ T cells (Fig. 2d,e). The few residual T cells in these 
mice had failed to delete CHMP5 and were CD44hi (Supplementary 
Fig. 2b,c), reflective of T cell lymphopenia in these mice.

The pre- and post-positive-selection stages of thymocyte develop-
ment are marked by upregulation of surface expression of the activation  

marker CD69 and the TCR on thymocytes16,17. Quantification of 
thymocyte subsets by those markers revealed a normal number of 
pre-selection (CD69−TCRβneg–lo) thymocytes but considerably 
fewer intermediate (CD69+TCRβhi) thymocytes and post-selection 
(CD69−TCRβhi) thymocytes in CKO mice relative to the abundance 
of these cells in wild-type mice (Fig. 2f,g). This analysis thus ‘mapped’ 
the earliest defect and requirement for CHMP5 to the intermediate 
post-selection thymocyte stage.

To further clarify the role of CHMP5 in the positive selection of 
thymocytes, we bred the CKO mice to OT-II mice (which have trans-
genic expression of an MHC class II (I-Ab)-restricted TCR), in which 
clonotypic Vα2+Vβ5+ T cells are positively selected into the CD4+  
T cell lineage18. Indeed, consistent with an essential requirement for 
CHMP5 in positive selection, the thymus and periphery of OT-II 
CKO mice showed considerable depletion of mature clonotypic Vβ5+ 
thymocytes and Vβ5+ T cells (Fig. 2h and Supplementary Fig. 2d,e). 
Collectively, these results revealed CHMP5 to be a cellular factor that 
was critically required for the positive selection of thymocytes and 
successful T cell development.

Cell-intrinsic role for CHMP5 in positive selection
The ESCRT machinery can mediate non–cell-autonomous signal-
ing19, which prompted us to assess whether the function of CHMP5 
was cell intrinsic. For this, we generated mixed-bone-marrow chi-
meras by reconstituting lethally irradiated congenic (CD45.1+) host 
mice with a 1:1 ratio of bone marrow from wild-type (CD45.2+) 
or CKO (CD45.2+) donors and congenic B6.SJL (CD45.1+) donors 
(Supplementary Fig. 3a). Flow cytometry of cells from the thymus 
and spleen revealed that although B6.SJL and CKO donor cells gener-
ated a similar proportion of DP thymocytes, mature thymocyte and 
peripheral T cell populations were composed almost entirely of wild-
type (CD45.1+) cells in chimeras reconstituted with a mixture of CKO 
and wild-type donor bone marrow (Fig. 3a,b).

To further confirm the cell-intrinsic activity of CHMP5 that was 
suggested by the preceding experiments, we assessed the restoration 
of thymocyte development in CKO mice by CHMP5 transgenesis. 
We constructed chimeras by reconstituting lethally irradiated B6.SJL 
(CD45.1+) mice with bone marrow cells transduced with bicistronic 
lentiviral vectors expressing green fluorescent protein (GFP) alone 
(control vector) or GFP and CHMP5 (Supplementary Fig. 3b). 
Analysis of CD45.2+GFP+ CKO donor cells in fully reconstituted 
host mice revealed that transgenically expressed CHMP5 restored 
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Figure 1 CHMP5 expression in thymocytes. (a) Chmp5 mRNA in subsets 
(horizontal axis) of thymocytes at CD4−CD8− double negative (DN) 
stages 1–4 (DN1–DN4), CD4+CD8+ double-positive thymocytes (DP), 
intermediate thymocytes (Int), and CD4+ (CD4SP) or CD8+ (CD8SP) 
single-positive thymocytes; results are normalized to those of the control 
gene Actb. (b) Immunoblot analysis of CHMP5 and GAPDH (loading 
control throughout) in lysates of thymocytes of various subsets (above 
lanes); numbers below lanes indicate band intensity relative to that of DP 
thymocytes. (c) Immunoblot analysis of CHMP5 in C57BL/6 (B6), B2m−/− 
and H2-Ab1−/− thymocytes (above blot) of various subsets (above lanes). 
Data are representative of three (a,b) or two (c) independent experiments 
(error bars (a), s.d. of biological duplicates). 

A rt i c l e s



782	 VOLUME 18 NUMBER 7 JULY 2017 nature immunology

A rt i c l e s

the generation of T cells from CKO thymocytes (Fig. 3c,d and 
Supplementary Fig. 3c,d); these results established a cell-intrinsic 
function for CHMP5 in thymocytes.

Normal TCR signaling in CHMP5-deficient thymocytes
CKO thymocytes had surface expression of TCRβ and CD3ε compara-
ble to that of wild-type thymocytes (Fig. 4a,b). After crosslinking with 
antibody to TCR (anti-TCR) plus anti-CD4, purified CKO pre-selection 
DP thymocytes showed no defect in the phosphorylation of proximal 
TCR-signaling substrates, including LAT, ZAP-70 and Cbl (Fig. 4c). The 
upregulation of CD69 expression after antibody crosslinking was also 
similar wild-type pre-selection DP thymocytes and their CKO counter-
parts (Fig. 4d and Supplementary Fig. 4). Concordantly, ex vivo thymo-
cyte analysis revealed similar expression of the TCR-signaling-avidity 
marker CD5 (ref. 20) (Fig. 4e,f) and markers of positive selection, the 
chemokine receptor CCR7 and cytokine receptor subunit IL-7Rα16,21,22 
(Supplementary Fig. 4), on wild-type and CKO thymocytes.

While the results above indicated normal TCR signaling in CKO 
thymocytes, we nonetheless considered that differences in TCR sign-
aling can be masked under polyclonal agonist stimulation23. Thus, we 
further assessed signaling in the well-characterized OT-I model defi-
cient in MHC class I (OT-I B2m−/−), in which preselection DP thymo-
cytes can be activated with tetramer ligands of H-2Kb and ovalbumin 
(OVA) peptide with defined TCR affinities23,24. The kinetics of phos-
phorylation of the kinase ERK, a determinant of positive versus nega-
tive TCR selection25, were similar in wild-type thymocytes and CKO 

thymocytes in response to a high-affinity tetramer (H-2Kb–OVA; 
agonist) or low-affinity tetramer (H-2Kb–Q7; antagonist) (Fig. 4g).  
Given the normal surface TCR density and surface expression of the 
TCR-signaling indicator CD5 (ref. 20) in CKO thymocytes (Fig. 4e,f), 
these data suggested that CHMP5 was dispensable for TCR signaling 
and that it enabled positive selection events distal to ERK.

Genome-wide analysis by RNA-based next-generation sequencing 
yielded few differences between the transcriptome of wild-type thymo-
cytes and that of CKO thymocytes (data not shown), which indicated 
that CHMP5 might regulate T-cell development post-transcriptionally. 
We detected changes in transcript expression consistent with normal 
positive selection TCR signaling26, including the induction of Gata3, 
Nfatc1, Egr1 and Tox (Supplementary Fig. 5a,b). Notably, while their 
differentiation was eventually abolished, CKO intermediate thymo-
cytes initiated the transcription of genes (Zbtb7b and Runx3) encoding 
products linked to commitment to the CD4+ and CD8+ T cell line-
ages27, but with lower expression than that of mature lineage-com-
mitted thymocytes (Supplementary Fig. 5c). Thus, in intermediate 
thymocytes, CHMP5 acted at a point preceding terminal lineage com-
mitment. Furthermore, unlike osteoclasts12, CKO thymocytes showed 
normal activity of the transcription actor NF-κB (Supplementary  
Fig. 5d,e) that is important for thymocyte development28,29.

ESCRT-dependent trafficking in thymocytes
The ESCRT machinery mediates the trafficking and endocytosis of 
surface receptors30. Despite its role in regulating the ATPase VPS4 
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that catalyzes the final step in membrane scission during ESCRT 
activity31,32, we found that CHMP5 was unexpectedly dispensable 
for TCR dynamics in thymocytes. First, downregulation of surface 
clonotypic Vα2+ TCR on pre-selection thymocytes stimulated with 
tetramers of varying affinity proceeded normally (Fig. 5a). In addi-
tion, steady-state recycling of CD3ε and internalization of CD3ε com-
plexes into early (EEA-1+) and late (Rab-7+) endosomal vesicles after 
TCR stimulation was unperturbed in CKO thymocytes (Fig. 5b,c). 
Furthermore, we assessed canonical ESCRT-mediated formation of 
MVBs and found that wild-type intermediate thymocytes and CKO 
intermediate thymocytes contained a similar number of MVBs of 
comparable size and a similar composition of intralumenal vesicles 
(Fig. 5d–g). These results together suggested that CHMP5 was dis-
pensable for ESCRT activity in thymocytes.

CHMP5 promotes the survival of post-selection thymocytes
Failure in positive selection generally ‘maps’ to defects in either TCR sig-
naling or thymocyte survival1,23,33,34. Because CHMP5 deficiency did 
not affect TCR signaling, we investigated whether it affected thymocyte 
survival. Notably, we found that CKO mice had a significantly higher 
frequency of apoptotic annexin V–positive post-selection thymocytes 
than wild-type mice had (Fig. 6a). To understand the basis of the 
enhanced apoptosis of CKO thymocytes, we evaluated the expression  

of proteins of the Bcl-2 family that are essential for the survival and 
development of thymocytes35. Although CKO thymocytes exhibited 
expression of mRNA encoding pro-survival proteins of the Bcl-2 
family (Fig. 6b and Supplementary Fig. 6a) and mRNA encoding 
the pro-apoptotic protein Bim (Supplementary Fig. 6a,b) similar to 
that of wild-type thymocytes, we found that total and mitochondrial 
Bcl-2 proteins were much less abundant in polyclonal thymocytes 
and in clonotypic OT-II CKO thymocytes than in their wild-type 
counterparts (Fig. 6c and Supplementary Fig. 6b–e).

IL-7, a key inducer of Bcl-2 expression in intermediate thymo-
cytes2, induced normal phosphorylation of the transcription factor 
STAT5 but failed to restore the expression of Bcl-2 protein in CKO 
thymocytes (Supplementary Fig. 6f,g), which indicated that the 
defective expression of Bcl-2 protein was not due to a failure of sig-
naling via the IL-7 receptor. In cultures treated with cycloheximide 
to block all new protein synthesis, we found that CKO thymocytes 
had more degradation of Bcl-2 protein than that of wild-type thymo-
cytes (Supplementary Fig. 6h). Together these biochemical results 
were consistent with a post-translational defect in Bcl-2 expression 
in CHMP5-deficient thymocytes.

Post-translational regulation of Bcl-2 stability by CHMP5
We next sought to elucidate the Bcl-2–CHMP5 interaction and its 
mechanism of action. Co-immunoprecipitation of proteins with anti-
CHMP5 revealed that endogenous CHMP5 associated with Bcl-2 in 
intermediate thymocytes (Fig. 6d). The physical interaction of Bcl-2  
and CHMP5 was further confirmed in HEK293 human embry-
onic kidney cells co-expressing epitope-tagged Bcl-2 and CHMP5 
(Supplementary Fig. 6i). This interaction probably involved direct 
contact, as we detected Bcl-2–CHMP5 interactions in a cell-free assay 
(Supplementary Fig. 6j).

Since post-translational inactivation and degradation of Bcl-2 
involves reactive oxygen species (ROS)-mediated oxidation of its 
cysteine residues into cysteine sulfenic acid36, we assessed such sulfe-
nylation of Bcl-2 in thymocytes. For this, we immunoprecipitated Bcl-
2 from total thymocyte lysates with anti-Bcl-2 (normalized by equal 
amounts of Bcl-2 in the input samples) and quantified sulfenylation 
in the immunoprecipitates with the biotinylated sulfenic-acid-reactive 
probe DCP-Bio1, followed by streptavidin-based detection37. Notably, 
Bcl-2 immunoprecipitated from CKO intermediate thymocytes was 
more highly sulfenylated than that from wild-type intermediate thy-
mocytes (Fig. 6e), which, given the highly unstable nature of protein 
sulfenic acids in vivo38, probably represented an underestimation. The 
enhanced sulfenylation of Bcl-2 in CKO thymocytes was not the result 
of a greater abundance of ROS, as wild-type thymocytes and CKO thy-
mocytes showed similar abundance of cellular ROS (Supplementary 
Fig. 6k). Notably, as the ROS scavenger NAC prevented the degrada-
tion of Bcl-2 in and apoptosis of cultured intermediate CKO thymo-
cytes (Fig. 6f,g), our findings suggested that thymocytes were instead 
more susceptible to degradative ROS-induced protein modification 
when deficient in CHMP5.

We hypothesized that because of the defect in Bcl-2 expression 
in CKO thymocytes, inhibition of apoptosis in vivo would restore 
thymocyte development in CKO mice. Indeed, we found that genetic 
ablation of Bim, a key mediator of thymocyte apoptosis39, as well 
as transgenic overexpression of Bcl-2, significantly augmented post-
selection thymocyte development in CKO mice, as evinced by the 
restoration of TCRβ+CCR7hi thymocytes and CD4+ or CD8+ single- 
positive thymocytes in these mice (Fig. 6h,i and Supplementary  
Fig. 7a–d). CKO mice on the Bim−/− genetic background had 3.6-fold  
more CD4SP thymocytes and 2.6-fold more CD8SP thymocytes 
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three independent experiments (average + s.e.m. of n = 5 mice per group 
in b; mean (center line), minimum and maximum (box ends), and highest 
and lowest values (bars extending above and below box) of n = 4–6 mice 
per group in c,d).
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than did CKO mice on the Bim+/+ genetic background (Fig. 6h,i). 
We thus concluded that the apoptosis of CKO thymocytes was due  
at least in part to downregulation of Bcl-2 protein. Furthermore,  
these results supported our hypothesis that post-translational sta-
bilization of Bcl-2 by CHMP5 enables the survival of post-selection 
thymocytes and, ultimately, the productive generation of T cells dur-
ing positive selection.

TCR signals control CHMP5 expression in thymocytes
We next explored whether the abundance of CHMP5 was controlled 
during thymocyte selection. Even though the induction of CHMP5 
expression in intermediate thymocytes that had received signaling via 
the TCR suggested that it was stabilized by positive selection, in vitro 
stimulation with anti-TCR plus crosslinking of the co-receptors CD2 or 
CD28, with ionomycin alone or with PMA plus ionomycin downregu-
lated CHMP5 expression in DP thymocytes (Supplementary Fig. 8a).  
Suspecting that those agonists might have exceeded the physiological 
thresholds for TCR signaling during positive selection23, we quanti-
fied CHMP5 expression in DP thymocytes stimulated with ‘titrated’ 
doses of PMA plus ionomycin. Notably, we found that the expression 
of CHMP5 was increased only by low or intermediate doses of PMA 
plus ionomycin but was downregulated at higher doses (Fig. 7a).

The graded modulation of CHMP5 expression by the dose of 
PMA plus ionomycin suggested that CHMP5 in DP thymocytes 

might sense the quantity of TCR signals. To test this possibility with  
more physiological TCR ligands, we measured CHMP5 in prese-
lection OT-I B2m−/− DP thymocytes stimulated with a panel of  
tetramers of H-2Kb and OVA-derived peptides23–25. Indeed, we  
found that CHMP5 was stabilized only by low-affinity (antagonist) 
tetramer ligands (Q7, G4 and E1), while high-affinity (agonist)  
ligands (OVA and A2), like the high dose of PMA plus ionomy-
cin, downregulated its expression (Fig. 7b). In fact, both high con-
centrations of PMA plus ionomycin and agonist tetramers caused  
downregulation of the expression of Chmp5 mRNA and CHMP5 
protein (Supplementary Fig. 8b,c). As expected, we detected  
more apoptosis of OT-I B2m−/− CKO preselection thymocytes- 
stimulated with low-affinity tetramer than of their wild-type coun-
terparts (Fig. 7c).

Because such analyses proved technically challenging in thymo-
cytes, we used HEK293 cells and human Jurkat T lymphocytes to 
determine whether TCR signaling caused ubiquitination of CHMP5 
that might have led to its degradation. We determined that in these 
cells, a high dose of PMA plus ionomycin or crosslinking with anti-
CD3 plus anti-CD28 indeed induced ubiquitination of CHMP5 
and Bcl-2 that was inhibited by NAC (Supplementary Fig. 8d–f). 
These results confirmed that the degradation of CHMP5 protein 
was induced by strong TCR agonists and was associated with ROS-
dependent degradation of Bcl-2.
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Post-translational modification of CHMP5
To elucidate the mechanism by which CHMP5 was regulated, we 
performed mass spectrometry to determine whether this was post-
translational modification via TCR signaling. Specifically, we obtained 
affinity-purified Flag-tagged CHMP5 from lysates of HEK293 cells 
treated with a low dose of PMA plus ionomycin and subjected the 
CHMP5 to phosphoproteome mass spectrometry. Accordingly, 
we identified ligand-induced post-translational modifications of 
CHMP5, which included phosphorylation at Ser26 and Ser30 and 
ubiquitination at Lys100, residues that were strictly conserved across 
various mammalian species (Fig. 7d).

Through the use of site-directed mutagenesis and biochemical assays, 
we investigated the specific contribution of those residues to the stabil-
ity of CHMP5. First, we determined (in pulse-chase assay) that replace-
ment of the lysine at position 100 with arginine increased the stability 
of CHMP5 in HEK293 cells (Fig. 7e), probably by limiting the poly-
ubiquitination of CHMP5 (Fig. 7f). That result indicated involvement 
of Lys100 in the agonist-induced degradation of CHMP5. Conversely, 
individual or combined substitution of the serine at position 26 with 
glycine (S26G) and substitution of the serine at position 30 with alanine 
(S30A), which nullify serine-phosphorylation, resulted in constitutive 
ubiquitination of CHMP5 (Fig. 7g); this suggested that phosphoryla-
tion of Ser26 and Ser30 was necessary for the stability of CHMP5.

The deubiquitinase USP8 regulates CHMP5 stability
To achieve further mechanistic insight into the post-translational 
regulation of CHMP5, we considered that ligand-induced stabiliza-
tion of CHMP5 might require specific deubiquitinases (DUBs). Thus, 
to screen for DUBs that regulated CHMP5, we co-transfected HEK293 
cells to express epitope-tagged CHMP5 along with a panel of candi-
date DUBs and measured ubiquitination of CHMP5 after stimulating 
the cells with a high dose of PMA plus ionomycin. In this screen, we 
identified USP8 and USP21 as DUBs that inhibited the ubiquitination 
of CHMP5 (Fig. 8a). As USP21 is dispensable for T cell develop-
ment40, while deletion of USP8 impairs T cell generation41 similar 
such impairment in to CKO mice, we focused on USP8 as a potential 
CHMP5-specific deubiquitinase. Overexpression of USP8 potently 
inhibited the ubiquitination of CHMP5 (Fig. 8b) and increased the 
stability of CHMP5 in HEK293 cells (Fig. 8c).

Expression of USP8 protein was upregulated in thymocytes41 inde-
pendently of CHMP5 (Supplementary Fig. 9a), and USP8 immuno-
precipitated together with CHMP5 in intermediate DP thymocytes 
but not in DP thymocytes that had not undergone TCR selection 
signaling (Fig. 8d and Supplementary Fig. 9b); this suggested that 
positive selection signals induced the interaction of USP8 with 
CHMP5. Correspondingly, we detected CHMP5–USP8 association 
in DP thymocytes stimulated with a low dose of PMA plus ionomycin 
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(which stabilized CHMP5) but not in those stimulated with a high 
dose of PMA plus ionomycin (Supplementary Fig. 9c). Furthermore, 
cell-free assays indicated direct physical interaction of CHMP5 with 
USP8 (Fig. 8e).

Because the S26G and S30A substitutions resulted in constitutive 
degradation of CHMP5, we considered that Ser26 and Ser30 might 
control the interaction of CHMP5 with USP8, which specifically 
inhibited the ubiquitination of CHMP5 and improved its stability 
(Fig. 8a–c). Co-immunoprecipitation of epitope-tagged proteins 

revealed interaction between USP8 and wild-type CHMP5 but not 
between USP8 and mutant CHMP5 with both substitutions (S26G and 
S30A) (Fig. 8f). Thus, we surmised that phosphorylation at residues 
Ser26 and Ser30 promoted the stability of CHMP5 at least in part by 
facilitating its interaction with USP8.

Finally, to assess the in vivo role of USP8 in the stability of CHMP5, 
we quantified CHMP5 expression in lysates of USP8-deficient inter-
mediate thymocytes (from Usp8fl/fl mice expressing the Cd4-Cre trans-
gene (Usp8CD4cre))41. Notably, loss of USP8 resulted in a decrease not 
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only in CHMP5 but also in Bcl-2 (Fig. 8g). The loss of CHMP5 and 
Bcl-2 was at the protein level, as the expression of both Chmp5 mRNA 
and Bcl2 mRNA was intact in these cells (Fig. 8h and Supplementary 
Fig. 9d). Together our results have identified CHMP5 as an inte-
gral component of the post-translational machinery that enables the 
positive selection of thymocytes and have identified a USP8–CHMP5 
complex that controls the survival of post-selection thymocytes down-
stream of TCR signaling (Supplementary Fig. 9e).

DISCUSSION
In this study, we reported the finding that the ESCRT protein CHMP5 is 
an essential factor that enables T cell development in a cell-autonomous  
manner. Specifically, independently of its role in the ESCRT machin-
ery, CHMP5 orchestrated post-translational events necessary for 

the survival of thymocytes undergoing positive selection. In the 
absence of CHMP5, thymocytes failed to complete positive selection  
and T cell development was abolished. Our results suggest that the 
induction of CHMP5, which peaked at the intermediate thymocyte 
development stage, represents a previously undefined and critical 
checkpoint of positive selection. CHMP5 itself was also specifically 
regulated by post-translational mechanisms that were intricately regu-
lated by TCR signaling. Collectively, these findings demonstrate that 
beyond their classical function in membrane remodeling, individual 
ESCRT proteins have non-canonical activities that are critical for tis-
sue development.

The abundance of CHMP5 was regulated differentially by TCR 
signal affinity. Through the use of TCR-specific tetramers with pre-
defined affinities, we determined that low-affinity TCR ligands that 
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induce positive selection uniquely promoted CHMP5 expression by 
increasing the stability of CHMP5, not via the transcription of Chmp5. 
CHMP5 in turn ensured the stability of Bcl-2 in positively selected 
thymocytes, which enabled their survival and maturation into the 
peripheral T cell pool. Thus, stabilization of CHMP5 appears to be 
one mechanism by which positive-selection TCR signals are able to 
induce and adequately sustain Bcl-2 to ensure the survival of differ-
entiating thymocytes. Notably, in contrast, high-affinity ligands that 
induce negative selection by apoptosis downregulated the expression 
of both CHMP5 protein and Chmp5 mRNA, an outcome replicated in 
CKO mice, with the consequence being the abolition of T cell matura-
tion. It is conceivable that in vivo downregulation of Chmp5 mRNA 
by high-affinity ligands, combined with downregulation of CHMP5 
protein, would serve to guarantee the effective and timely elimination 
of potentially self-reactive thymocytes during selection. Further stud-
ies are needed to determine whether this differential modulation of 
CHMP5 stability represents a discriminatory mechanism that broadly 
‘translates’ the quantity of both high-affinity TCR signaling and low-
affinity TCR signaling to central tolerance1.

ROS-induced oxidation can regulate protein activity positively 
or negatively38. In particular, ROS-mediated cysteine sulfenylation 
induced the degradation of Bcl-2, which suggested that CHMP5 
might protect Bcl-2 from deleterious oxidation by ROS. Thus, it is 

perhaps not coincidental that the activity of CHMP5 ‘mapped’ to 
intermediate thymocytes, in which several ROS are generated by TCR 
signaling during positive selection42,43. Moreover, intermediate thy-
mocytes represent the earliest post-selection developmental stage at 
which Bcl-2 proteins are first induced by intrathymic signaling either 
via the TCR or via IL-7 (refs. 2,22). Nevertheless, while our results 
support the proposal that Bcl-2 is a true target of CHMP5 involved 
in the phenotype of CKO mice, the partial restoration of the devel-
opment of CHMP5-deficient thymocytes by genetic ablation of Bim 
or by transgenic overexpression of Bcl-2 suggests the existence of 
additional CHMP5 substrates involved in regulating positive selec-
tion. Future identification of these substrates should yield additional 
insight into the activity of CHMP5.

CHMP5-deficient thymocytes unexpectedly showed no major 
defects in MVB biogenesis, endocytosis, surface-receptor recycling or 
degradation or TCR signaling despite the involvement of the ESCRT 
machinery and CHMP5 in these processes7,10,11,44. The normal TCR 
dynamics in CHMP5-deficient thymocytes also contrasted with 
increased surface TCR expression and signaling in Jurkat T cells in 
which CHMP5 is knocked down45. Such discrepancies might reflect 
a difference in the function of CHMP5 in thymocytes relative to that 
in peripheral or mature T cells or in primary T cells relative to that in 
transformed T cell lines. Alternatively, it might indicate redundancy 
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Figure 8 Stabilization of CHMP5 is dependent on the deubiquitinase USP8. (a) Immunoblot analysis of ubiquitinated CHMP5 (top), DUBs (middle) or 
total CHMP5 (bottom) in HEK293 cells transfected to express hemagglutinin (HA)-tagged CHMP5 and no DUB (−) or various Flag-tagged candidate DUBs 
(above lanes; red font indicates DUBs that inhibit the ubiquitination of CHMP5), then stimulated with PMA plus ionomycin, assessed with (top) or without 
(below) immunoprecipitation of histidine-tagged ubiquitin. (b) Immunoblot analysis of ubiquitinated CHMP5 (top), total CHMP5 (middle) or USP8 
(bottom) in HEK293 cells left untransfected (UT; left two lanes) or transfected to express increasing concentrations (wedge) of Flag-tagged USP8 (above 
blot), then left unstimulated (−) or stimulated (+) with PMA plus ionomycin (above lanes), assessed with (top) or without (below) immunoprecipitation 
of histidine-tagged ubiquitin. (c) Immunoblot analysis (pulse-chase assay) of 35S-labeled CHMP5 in HEK293 cells, assessed in the presence (USPS8) 
or absence (Vector) of exogenous USP8 (top), and quantification of CHMP5 in those cells at various chase times (below); results are normalized to those 
at time 0. (d) Immunoblot analysis of CHMP5 and USP8 in intermediate thymocytes with (top) or without (Input; bottom) immunoprecipitation with 
isotype-matched control antibody (IgG) or anti-CHMP5 (above lanes); asterisks (right margin) indicate antibody light chain. (e) Immunoblot analysis 
of USP8 in a cell-free assay of GST or GST-tagged CHMP5 (above lanes) and histidine-tagged USP8, assessed with (top) or without (Input; bottom) 
immunoprecipitation with anti-GST; numbers below lanes indicate USP8 band intensity relative to that of assays with GST alone. (f) Immunoblot analysis 
of USP8 and CHMP5 in Jurkat T cells co-transfected to express USP8 and vector alone (−) or vector expressing Flag-tagged wild-type CHMP5 or mutant 
CHMP5 with the S26G and S30A substitutions (S26G-S30A) (above lanes), assessed with (top) or without (Pre-IP; bottom) immunoprecipitation  
with anti-Flag. (g,h) Immunoblot analysis of CHMP5, Bcl-2 and USP8 (g) and qPCR analysis of Chmp5 mRNA (h) in intermediate thymocytes from  
USP8-deficient mice (Usp8CD4cre) and their USP8-sufficient (control) littermates (Usp8f/f) (two mice (1, 2) per genotype (above lanes) in g). Asterisk  
(left margin, g) indicates a nonspecific band. Data are representative of two (a,c–h) or three (b) independent experiments.
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in activators of VPS4, as has been suggested, in which in the absence 
of CHMP5, the ESCRT machinery achieves activation of VPS4 via 
VPS2 (also known as CHMP2 and Did4)31,32, which is also expressed 
in thymocytes. In any case, our results suggest that the role of CHMP5 
in positive selection is probably independent of its function in ESCRT-
mediated endocytosis.

Paradoxically, even though the ESCRT machinery evolved to facili-
tate the lysosomal degradation of ubiquitin-tagged proteins46, our 
findings for thymocytes suggested an activity of CHMP5 that instead 
promoted the stability of protein substrates such as Bcl-2. One possi-
ble explanation for this is that CHMP5 deficiency might have restored 
or augmented the activity of an undefined Bcl-2-specific E3 ligase 
whose lysosomal degradation was reversed in the absence of CHMP5-
dependent ESCRT machinery. However, as we did not observe major 
defects in ESCRT-mediated processes, we favor a scenario in which 
CHMP5 directly impairs the ubiquitination of specific protein targets. 
That possibility is supported by the finding of direct physical associa-
tion between CHMP5 and Bcl-2 in post-selection thymocytes. Indeed, 
interactions between members of the ESCRT complex and proteins of 
the Bcl-2 family have been reported in yeast, in which an isoform of 
the ESCRT-III protein VPS24 binds to the Bcl-2-associated protein 
Bax and inhibits its pro-apoptotic activity47.

We identified USP8 as a specific deubiquitinase for CHMP5, which 
indicates the involvement of a CHMP5–USP8 complex in control-
ling the positive selection of thymocytes. In agreement with that, 
expression of CHMP5 protein was substantially downregulated in 
USP8-deficient thymocytes, and the observed T cell deficiency in 
mice with thymocyte-specific USP8 deficiency41 resembles the phe-
notype of the CKO mice reported here. Despite the lack of specific 
structural domains in CHMP5, crystallography studies suggest that 
the C-terminal tandem β-hairpin structure of CHMP5, which binds 
the ESCRT accessory protein Brox, furnishes a protein–protein inter-
action interface48 that could potentially be involved in binding USP8. 
Our identification of serine-phosphorylation residues in CHMP5 that 
facilitated its binding to USP8 not only emphasize the specificity and 
signal dependence of this association but evoke similarities to the 
serine phosphorylation required for the interaction of USP8 with the 
adaptor 14-3-3β that is also essential for T-cell development41.

In summary, our study has identified the ESCRT protein CHMP5 
as a critical requirement for the positive selection of thymocytes and 
T cell development. Evidence that CHMP5 is also anti-apoptotic in 
acute myeloid leukemia cells49 raises the possibility that its dysregula-
tion might perturb tissue homeostasis and the emergence of malig-
nancy. This highlights the need for future work to elucidate the link 
between CHMP5 and disease.

METHODS
Methods, including statements of data availability and any associated 
accession codes and references, are available in the online version of 
the paper.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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ONLINE METHODS
Mice. C57BL/6J mice, B6.SJL-PtprcaPepcb/BoyJ (B6.SJL) mice, C57BL/6-
Tg(TcraTcrb)425Cbn/J (OT-II) mice, C57BL/6-Tg(TcraTcrb)1100Mjb/J (OT-I) 
mice, B6.129P2-B2mtm1Unc/J (β2-microglobulin-deficient) mice, B6.129S2-
H2dlAb1–Ea/J (MHC class II–deficient) mice, B6.129S1-Bcl2l11tm1.1Ast/J 
(Bim−/−) mice39 and B6.Cg-Tg(Cd4-cre)1Cwi/BfluJ (Cd4-Cre-transgenic) 
mice50 were purchased from the Jackson Laboratory. OT-I B2m−/− mice were 
bred in our colony at Weill Cornell Medical College (New York). Chmp5fl/fl  
mice (with loxP-flanked exons 4 and 5 of Chmp5) have been previously 
described11. Bcl2-transgenic mice51 were provided by A. Singer (NIH). All 
mice were maintained in a specific-pathogen-free facility at Weill Cornell 
Medical College (New York) under approved protocols and were analyzed 
between 6 weeks and 12 weeks of age.

Cell isolation, culture and stimulation. Thymus, spleen and lymph nodes 
were harvested and processed by mechanical dissociation to obtain single cells. 
Splenocytes were treated with ACK buffer (Gibco) to lyse red cells. Single-cell 
suspensions were filtered through 70-µm strainers and were resuspended in  
T cell media (RPMI 1640 supplemented with 2 mM l-glutamine, 1 mM sodium 
pyruvate, 10 mM HEPES, pH 7.4, 1× MEM nonessential amino acids, 50 IU/ml 
penicillin, 50 µg/ml streptomycin, 55 µM β-mercaptoethanol and 10% FBS). 
HEK293 cells (ATCC) were cultured in complete DMEM supplemented with 10% 
FBS, 2 mM l-glutamine, 50 IU/ml penicillin and 50 µg/ml streptomycin. Except 
where indicated otherwise, thymocytes were stimulated with pre-determined  
doses of plate-bound antibody or pharmacological agonists52,53: 10 µg/ml 
anti-TCR (H57-597, BD Biosciences), 5 µg/ml anti-mouse CD2 (RM2-5, BD 
Biosciences), 5 µg/ml anti-mouse CD4 (GK1.5, BD Biosciences); 0.2 ng/ml 
PMA (phorbol-myristate-acetate) plus 0.2 µg/ml ionomycin (Calbiochem); 
50 µg/ml cycloheximide (Sigma); 10 µM MG132 (Sigma); and 5 ng/ml IL-7 
(PeproTech). All cells were cultured at 37 °C in 5% CO2 incubators.

Antibodies, flow cytometry and cell sorting. Single-cell suspensions were 
washed with flow-cytometry buffer (PBS plus 2% FBS) and were stained with 
fluorochrome-conjugated antibodies for 45 min at 4 °C. The following anti-
body clones were used: anti-CD4 (GK1.5), anti-CD8α (53-6.7), anti-TCRβ 
(H57-597), anti-CD3ε (145-2C11), anti-CD24 (M1/69), anti-CD69 (H1.2F3), 
anti-CD44 (IM7), anti-CCR7 (4B12), anti-CD5 (53-7.3), anti-Vα2 (B20.1), 
anti-IL-7Rα (A7R34) and anti-CD45.1 (A20), anti-CD45.2 (104), all from 
BioLegend; and anti-Vβ5 (MR9-4) and anti-Bcl-2 (clone 3F11), both from 
BD Biosciences. For intracellular protein detection, cells were first stained for 
surface antigen, then were fixed, permeabilized and stained for intracellular 
proteins following the Foxp3 staining kit protocol (eBiosciences). STAT5 phos-
phorylated at Tyr694 (clone 47/Stat5(pY694); BD Biosciences) was detected 
using the BD Phosflow protocol. Samples were acquired on a BD LSRII. Dead 
cells were excluded by DAPI (4′,6-diamidino-2-phenylindole, 0.5 µg/ml; Life 
Technologies) or, for fixed cells, positivity for Live/Dead fixable Yellow (Life 
Technologies). All flow-cytometry sorting was performed on a BD FACSAria II  
SORP instrument. Sorted thymocyte populations were defined as follows: 
preselectionCD4+CD8α+ double-positive(DP), CD4+CD8α+CD24hiCD69− 
TCRβneg–lo; intermediate (Int; Supplementary Fig. 4a), CD4+CD8αintCD24hi 
CD69+TCRβhi; and post-selection, CD24−CD69−TCRβhi. Flow-cytometry 
data were analyzed using FlowJo vX.0.7 (TreeStar).

Tetramer stimulation. H-2kb tetramer peptides were generated by the 
NIH Tetramer Core Facility (Emory University): VSV (RGYVYQGL), OVA 
(SIINFEKL), A2 (SAINFEKL), Q7 (SIINFEQL), G4 (SIIGFEKL) and E1 
(EIINFEKL). OT-I B2m−/− or Chmp5fl/flCd4-Cre OT-I B2m−/− thymocytes 
were stimulated with tetramers as previously described23,54. In brief, for apop-
tosis assays and determination of the surface expression of Vα2, 0.5 × 106 
thymocytes were plated in 200 µl T cell medium in 96-well U-bottomed plates 
and were stimulated by the addition of 2 µl tetramer (final, 0.2 µg/ml) and were 
cultured for 4 h. For immunoblot analysis, 2 × 106 thymocytes were stained 
with tetramer (0.2 µg/ml tetramer per 0.5 × 106 cells) on ice in Eppendorf 
tubes. Cells were activated by warming up to 37 °C with pre-warmed (37 °C) 
PBS and incubation in 37 °C water bath for the times indicated in Figure 4g. 
Tetramer-stimulated thymocytes were analyzed by flow cytometry or were 
subjected to immunoblot analysis.

Receptor internalization and recycling assay. For receptor internalization, 
tetramer-stimulated OT-I B2m−/− or Chmp5fl/flCd4-Cre OT-I B2m−/− thymo-
cytes (as described above) were evaluated for surface Vα2 geometric mean 
fluorescence intensity in FlowJo. The CD3ε-recycling assay was performed 
with some modifications of previously described protocols55,56. In brief,  
20 × 106 total thymocytes were cultured in medium containing 5 µg/ml phy-
coerythrin (PE)-labeled anti-CD3ε (145-2C11, BD Biosciences) for 30 min 
and were washed twice in PBS. Thymocytes were then acid-stripped (30 s at 
25 °C in 100 mM glycine and 100 mM NaCl, pH 2.5) to remove surface-bound 
antibodies and washed twice in PBS, and aliquots were incubated at 37 °C, for 
the times indicated in Figure 5b, to allow receptor recycling to the surface. At 
the end of each time, thymocytes were mixed with ice-cold PBS containing 1% 
BSA and 0.1% NaN3 and were maintained on ice. After data for all time points 
were collected, thymocytes were washed and acid-stripped (100 mM glycine 
and 100 mM NaCl, pH 2.5), followed by washing in ice-cold PBS (containing 
1% BSA and 0.1% NaN3). Thymocytes were stained for CD4, CD8α, CD69, 
CD24 and TCRβ (antibodies identified above) and were analyzed by flow 
cytometry. CD3ε recycling was calculated by the following formula: % recycled 
= 100 × [((MFI at t = 0) − (MFI at time point))/(MFI at t = 0)].

Bone-marrow transplantation. Bone marrow (BM) was isolated by flushing 
of tibia and femur marrows with ACK red cell lysis buffer (Gibco), then it 
was washed and depleted of B cells and T-cells using CD19 microbeads and a 
CD3ε microbeads kit (Miltenyi Biotec). For 1:1 mixed chimeras, BM obtained 
from wild-type (Chmp5fl/fl; CD45.2+) or CKO (Chmp5fl/flCd4-Cre; CD45.2+) 
mice and depleted of T cells and B cells (1 × 106 BM cells) was mixed with BM 
obtained from congenic wild-type (B6.SJL, CD45.1+) mice and depleted of  
T cells and B cells (1 × 106 BM cells) and the mixture was injected into lethally 
irradiated (1,000 rads) congenic wild-type (B6.SJL, CD45.1+) mice. For lentivi-
ral transduction, BM was depleted of T cells and B cells and the resultant BM 
cells were cultured in complete StemPro-34 SFM (ThermoFisher Scientific) 
containing recombinant mouse cytokines (10 ng/ml IL-3, 50 ng/ml IL-6,  
20 ng/ml Flt3L and 50 ng/ml SCF, PeproTech), 50 IU/ml penicillin and  
50 µg/ml streptomycin. After 24 h, cells were infected with lentiviral superna-
tants in the presence of Polybrene (8 µg/ml) and centrifugation at 1,000g for 2 h 
at 25 °C. Total transduced cells were harvested after 48 h and was injected by the 
retro-orbital route into lethally irradiated congenic wild-type (B6.SJL, CD45.1+) 
mice. All chimeras were analyzed at 8–12 weeks after transplantation.

Immunofluorescence microscopy. Thymocytes were stained with 5 µg/ml 
anti-CD3ε (145-2C11, hamster; BD Biosciences) on ice for 30 min and were 
transferred onto pre-chilled poly-l-lysine-coated glass slides (Sigma) that were 
previously coated with anti-mouse CD3ε (17A2, 5 µg/ml; eBiosciences). Cells 
were allowed to attach to slides on wet ice for 30 min. For stimulation, slides 
were placed in 37 °C incubator for the times indicated in Figure 4c, after 
which they were fixed for 10 min at 25 °C with 4% paraformaldehyde. After 
being fixed, cells were washed five times with PBS, were blocked and per-
meabilized by incubation for 30–60 min in PBS containing 3% goat serum, 
1% BSA and 0.1% Triton X-100. Slides were then incubated overnight at 4 °C  
with primary antibodies (rabbit anti-EEA1 (C45B10; 1:200) and rabbit anti-
Rab7 (D95F2; 1:200); Cell Signaling Technology) in PBS containing 1% 
BSA and 0.1% Triton X-100. Primary antibodies were visualized by staining 
with secondary antibodies (Alexa Fluor 488-conjugated goat anti-hamster 
(A21110; Life Technologies) and VectaFluor R.T.U. Dylight 594 anti-rabbit IgG  
(DI-1794; Vector Laboratories)) and were counterstained with 1 µg/ml DAPI. 
Stained sections were mounted with Slowfade Gold (Life Technologies) and 
were imaged using an AxioVert LSM710 confocal microscope (Zeiss).

Histology. Harvested thymus were snap-frozen in O.C.T. compound (Tissue-
Tek, Sakura) and were stored at −80 °C. 10-µm sections were cut at −18 °C 
using a Bright OTF5000 cryostat (Hacker Instruments) and were stained with 
hematoxylin and eosin.

Transmission electron microscopy (TEM). Sorted thymocytes were washed 
once in PBS and were either directly fixed for TEM as described below or 
incubated with 10 µg/ml anti-CD3ε biotin (145-2C11, BD Biosciences) in 
serum-free (SF) RPMI on ice for 30 min. Stained cells were washed in PBS and 
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incubated for 1 h at 37 °C in SF-RPMI containing 15 µg/ml of 10-nm gold-
conjugated streptavidin (AC-10-04-05; Cytodiagnostics) and 15 µg/ml of 5-nm 
gold-conjugated human holo-transferrin (AC-5-07-05; Cytodiagnostics). After 
culture, cells were washed twice with PBS before TEM fixing. In brief, cells 
were fixed for TEM with a modified Karnovsky’s fix of 2.5% glutaraldehyde, 4% 
paraformaldehyde and 0.02% picric acid in 0.1 M sodium cacodylate buffer at 
pH 7.2. Following secondary fixation in 1% osmium tetroxide and 1.5% potas-
sium ferricyanide, samples were dehydrated through a graded ethanol series 
and were embedded in an epon analog resin. Ultrathin sections were cut using 
a Diatome diamond knife (Diatome) on an RMC MT-7000 Ultramicrotome 
(RMC Products). Sections were collected on copper grids and were further 
contrasted with lead citrate and viewed on a JEM 1400 electron microscope 
(JEOL) operated at 120 kV. Images were recorded with a Veleta 2K × 2K CCD 
(Olympus-SIS) and images were evaluated and quantified by researchers 
‘blinded’ to sample identify.

RNA isolation and quantitative real-time PCR. Total RNA was isolated from 
cells using Qiazol reagent (Qiagen). Total RNA (100–500 ng) was reverse-
transcribed to cDNA using a high-capacity cDNA reverse-transcription kit 
with random priming (Applied Biosystems, #4368814). Gene-expression levels 
were calculated and are presented as expression relative to that of control genes 
(Actb or Hprt) on the basis of the change in cycling threshold (∆CT) method 
as 2−∆CT, where ∆CT is CT (gene of interest) − CT (control gene). PCR primer 
sequences and TaqMan probes are in Supplementary Table 1.

Plasmids and lentiviruses. The following plasmids were used: Flag- or HA-
tagged human USP1, USP2, USP8, USP15, USP21, AMSH, DUB3, VCPIP1, 
OTUD4 and OTUD5 (Addgene); Myc-tagged human USP8 (Sino Biological 
Inc.); shRNA targeting human CHMP5 and USP8 (Sigma). Plasmids encod-
ing Bcl-2 were provided by N. Du (Weill Cornell Medicine) and S. Dimmeler 
(J.W. Goethe University Hospital)57. Chmp5 cDNA encoding C-terminal 
Flag-tagged CHMP5 (NP_084090.1) or N-terminal HA-tagged CHMP5 was 
amplified by PCR and cloned into pCDNA3 (ThermoScientific), pCI-Neo 
(Promega), or pHAGE/IRES-GFP. CHMP5 mutants (S26G, S30A, S26G-S30A 
and K100R) were generated by site-directed mutagenesis of a wild-type Chmp5 
construct (Agilent Technologies). BCL2 encoding N-terminal HA-tagged 
Bcl-2 (NP_000624.2) was amplified by PCR and cloned into the pCMV-Myc 
(Clontech) mammalian expression vector. To produce lentivirus, 293-FT cells 
(Invitrogen) were transfected with plasmids along with VSVg and delta 8.9 
packaging plasmid vectors. After 48 h, viral supernatants were harvested, fil-
tered through a 0.45-µm filter and concentrated with an Amicon Ultra-10 
centrifugal filter (EMD Millipore).

Immunoprecipitation, immunoblot analysis and pulse-chase assay. 
Thymocytes were washed in ice-cold PBS and centrifuged and pellets were 
stored at −80 °C or lysed immediately in TNT buffer (10 mM Tris, pH 8.0,  
50 mM NaCl, 5 mM EDTA, 2 mM NaF, 30 mM sodium pyrophosphate,  
100 mM Na3VO4, 0.5 mM PMSF, 1 µg/ml leupeptin, 5 µg/ml aprotinin and  
1% Triton X-100). Mitochondrial fractions were prepared using the 
Mitochondrial Isolation kit (ThermoFisher Scientific). Lysates were subjected 
to immunoprecipitation or were separated by SDS-PAGE before transfer to 
Immunobilon-P membranes for detection. For pulse-chase assays, HEK293 
cells were transfected with DNA constructs using Effectene reagent (QIAGEN). 
After 48 h, transfected cells were incubated under starvation conditions (3% 
FBS Cys/Met-free DMEM) for 3 h. Cells were then incubated in labeling 
medium containing 35S-methionine for 1 h and were cultured in chase medium 
(5% FBS in complete DMEM) for various durations. Cells were lysed, and 
proteins were immunoprecipitated with anti-Flag (M2)-conjugated agarose 
and subjected to SDS-PAGE and immunoblot analysis. The following anti-
bodies were used: anti-CHMP5 (Santa Cruz, sc-67230; 1:250 for immunoblot 
analysis (IB)), polyclonal antibody to CHMP5 generated in-house by immu-
nization of rabbits with a 17-amino-acid synthetic peptide corresponding to 
the C-terminal sequence of mouse CHMP512 (antibody specificity valida-
tion, Supplementary Fig. 1a; 1:100 for immunoprecipitation (IP) and 1:1,000 
for IB), anti-Bcl-2 (sc-7382; 1:250 for IB), anti-Bim (sc-11425; 1:250 for IB), 
anti-ubiquitin (sc-8017; 1:250 for IB), anti-Vps4 (sc-393428; 1:250 for IB), 
anti-Hsp90 (sc-7947; 1:250 for IB), anti-Gata-3 (sc-268; 1:250 for IB), anti-

HA agarose conjugate (sc-7392AC, clone F7; 1:40 for IP), anti-c-Myc HRP-
conjugate (sc-40AC, clone 9E10; 1:1,000 for IB) and anti-HA HRP conjugate 
(sc-7392; 1:1,000 for IB), all from Santa Cruz; anti-ERK (4695; 1:1,000 for IB), 
antibody to ERK1/2 phosphorylated at Thr202 and Tyr204 (4576; 1:1,000 for 
IB), VDAC (4866; 1:1,000 for IB), anti-actin (4967; 1:1,000 for IB), anti-Hrs 
(15087; 1:1,000 for IB) and anti-Bcl-xl (2764; 1:1000 for IB), all from Cell 
Signaling Technologies; antibody to phosphorylated tyrosine (clone 4G10,  
05-321; 1:1,000 for IB), from EMD Millipore; anti-Mcl-1 (Rockland, 600-401-394;  
1:1,000 for IB); anti-GAPDH (Affinity Bioreagents, PA-116777; 1:1,000 for 
IB); anti-USP8 (Genetex, GTX103747; 1:1,000 for IB); anti-CHMP2B (Abcam, 
ab157208; 1:1,000 for IB); anti-LIP5/VTA1 (a gift J. Kaplan, University of Utah; 
1:1,000 for IB); and anti-Flag (Sigma-Aldrich, F-1804; 1:1,000 for IB). Labeled 
proteins were visualized with autoradiography or by digital chemilumines-
cence imaging (FluorChem E, ProteinSimple) and densitometry quantification 
was performed using the ImageJ program (NIH).

Ubiquitination assay. HEK293 cells were transfected with plasmids encod-
ing human CHMP5, USP8 and Bcl-2, along with plasmid encoding histidine 
(His)-tagged ubiquitin. 24 h after transfection, the cells were treated with  
10 µM MG132 (EMD Millipore) for 6 h and harvested for biochemical assays. 
In some cases, HEK293 cells were also treated with 0.2 ng/ml PMA plus  
0.2 µg/ml ionomycin. To detect ubiquitination cells were harvested, lysed and 
sonicated in denaturation buffer (8M Urea, 50 mM Tris, pH 8.0, 1.0% Triton 
X-100 and 10 mM Imidazol), immunoprecipitated with Ni-NTA beads and 
analyzed by immunoblot with antibodies (identified above) specific for the 
target proteins.

Cysteine-sulfenic-acid detection. Bcl-2 oxidation was assessed by cysteine-
sulfenic-acid detection using the DCP-Bio1 reagent (3-(2,4-dioxocyclohexyl) 
propyl) as described37,58. In brief, thymocytes were labeled with the cysteine 
oxidation probe DCP-Bio1 (EMD Millipore, NS-1226) in lysis buffer (50 mM 
Tris-HCl, pH 7.5, 100 mM NaCl, 0.1% SDS, 0.5% sodium deoxycholate, 0.5% 
NP-40, 0.5% Triton X-100, 50 mM NaF, 1 mM PMSF, 1 mM DCP-Bio1, 100 µM 
DTPA, 10 mM N-ethylmaleimide, 10 mM iodoacetamide, 200 U/ml catalase 
and 1× protease inhibitor cocktail) for 2 h on ice. The DCP-Bio1-labeled pro-
teins were immunoprecipitated with anti-Bcl-2 (identified above) and protein 
A–conjugated Dynabeads. Lysates were separated by SDS-PAGE, transferred to 
Immunomobilon-P membranes and developed with streptavidin-conjugated 
anti-HRP (SA10001, 1:3000; Life Technologies).

ROS and apoptosis detection. Cellular ROS were measured by incubation 
of equal numbers of thymocytes from wild-type and CKO mice in serum-
free medium containing 5 µM CellRox Deep Red reagent (Life Technologies), 
followed by incubation for 30 min at 37 °C and then flow cytometry. NAC 
(N-acetyl-l-cysteine) was dissolved in PBS and adjusted to a pH of 7.4, and 
was used in cultures at a final concentration of 1 mM. Apoptotic cells were 
detected by annexin-V staining or by detection of active caspase-3 using the 
DEVD-FMK-FITC CaspGLOW reagent (eBiosciences).

NF-κB activity. 10 µg of sorted thymocyte cell lysates prepared with RIPA 
extraction buffer (ThermoFisher Scientific) were assayed in duplicates for 
active NF-κB subunit p65 with a commercially available p65 ELISA kit and 
protocol (ADI-EKS-446, Enzo Life Sciences) and with TNF-stimulated HeLa 
cell nuclear extract as a positive control. The chemiluminescent substrate sig-
nals were determined with a Varioskan (Thermo Electron Corporation), and 
data are presented as relative light units.

Mass spectrometry. For phosphorylation and ubiquitination-site mapping of 
CHMP5, HEK293 cells were transfected to express Flag-tagged mouse CHMP5 
and, after 24 h, were treated with PMA and ionomycin and 10 µM MG132. 
6 h later, cells were lysed and CHMP5 proteins were immunoprecipitated 
with anti-Flag conjugated to agarose (M2 beads, Sigma) and were eluted by 
Flag peptides. CHMP5 eluates were subjected to SDS-PAGE and visualized 
by colloidal Coomassie blue. The CHMP5 band was excised and was treated 
with DTT to reduce disulfide bonds and iodoacetamide to derivatize cysteine 
residues. The protein was digested in-gel with trypsin and then was analyzed 
by nanoscale-microcapillary reversed-phase liquid chromatography–tandem 
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mass spectrometry as described previously59. Tandem mass spectrometry 
spectra were searched using the SEQUEST algorithm60 against a database 
containing the sequences of mouse CHMP5 and common contaminants such 
as mouse keratin proteins with static modification of cysteine carboxymethyla-
tion, dynamic modification of methionine oxidation, and phosphorylation of 
serine, threonine and tyrosine. All peptide matches were filtered on the basis 
of mass deviation, tryptic state and XCorr and were confirmed by manual 
validation.

Statistics. Sample sizes were chosen on the basis of previous experience with 
similar studies; no statistical tests were used to predetermine sample size, and 
no exclusion of data points was used. The number of times experiments were 
repeated is indicated in each figure legend. Except where indicated otherwise, 
comparison of differences between groups was determined with a two-tailed, 
unpaired Student’s t-test and differences were considered significant at P < 0.05.  
Statistical analysis was performed using GraphPad Prism 7.0.

Data availability statement. All supplementary information is available in 
the online version of the paper. Additional source data are available from the 
corresponding authors upon request.
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